login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A164854
Diagonal sum of generalized Pascal triangle; (10^n,1).
1
1, 1, 11, 12, 113, 125, 1138, 1263, 11401, 12664, 114065, 126729, 1140794, 1267523, 11408317, 12675840, 114084157, 126759997, 1140844154, 1267604151, 11408448305, 12676052456, 114084500761, 126760553217, 1140845053978, 1267605607195, 11408450661173
OFFSET
0,3
FORMULA
From Robert Israel, Jul 01 2016: (Start)
G.f.: (1-x^2)/((1-10*x^2)*(1-x-x^2)).
a(n) = (171-9*(-1)^n)*10^floor(n/2)/142 + (A000045(n)-10*A000045(n+2))/71. (End)
a(n) = a(n-1)+11*a(n-2)-10*a(n-3)-10*a(n-4). - Wesley Ivan Hurt, Apr 21 2021
MAPLE
f:= gfun:-rectoproc({10*a(n-4)+10*a(n-3)-11*a(n-2)-a(n-1)+a(n),
a(0)=1, a(1)=1, a(2)=11, a(3)=12}, a(n), remember):
map(f, [$0..30]); # Robert Israel, Jul 01 2016
MATHEMATICA
LinearRecurrence[{1, 11, -10, -10}, {1, 1, 11, 12}, 30] (* Harvey P. Dale, Apr 07 2022 *)
CROSSREFS
KEYWORD
nonn,easy
AUTHOR
Mark Dols, Aug 28 2009
EXTENSIONS
More terms from Harvey P. Dale, Apr 07 2022
STATUS
approved