login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

Diagonal sum of generalized Pascal triangle; (10^n,1).
1

%I #12 Apr 07 2022 11:02:44

%S 1,1,11,12,113,125,1138,1263,11401,12664,114065,126729,1140794,

%T 1267523,11408317,12675840,114084157,126759997,1140844154,1267604151,

%U 11408448305,12676052456,114084500761,126760553217,1140845053978,1267605607195,11408450661173

%N Diagonal sum of generalized Pascal triangle; (10^n,1).

%H Robert Israel, <a href="/A164854/b164854.txt">Table of n, a(n) for n = 0..1990</a>

%H <a href="/index/Rec#order_04">Index entries for linear recurrences with constant coefficients</a>, signature (1,11,-10,-10).

%F From _Robert Israel_, Jul 01 2016: (Start)

%F G.f.: (1-x^2)/((1-10*x^2)*(1-x-x^2)).

%F a(n) = (171-9*(-1)^n)*10^floor(n/2)/142 + (A000045(n)-10*A000045(n+2))/71. (End)

%F a(n) = a(n-1)+11*a(n-2)-10*a(n-3)-10*a(n-4). - _Wesley Ivan Hurt_, Apr 21 2021

%p f:= gfun:-rectoproc({10*a(n-4)+10*a(n-3)-11*a(n-2)-a(n-1)+a(n),

%p a(0)=1,a(1)=1,a(2)=11,a(3)=12},a(n),remember):

%p map(f, [$0..30]); # _Robert Israel_, Jul 01 2016

%t LinearRecurrence[{1,11,-10,-10},{1,1,11,12},30] (* _Harvey P. Dale_, Apr 07 2022 *)

%Y Cf. A164844, A164852, A000045.

%K nonn,easy

%O 0,3

%A _Mark Dols_, Aug 28 2009

%E More terms from _Harvey P. Dale_, Apr 07 2022