login
A379817
Irregular table T(n, k), n >= 0, k >= 0, read by rows such that T(n,k) = f(n,k)/f(2^k-1,k) where f(n,k) is defined in Comments.
2
1, 1, 1, 3, 2, 1, 3, 1, 7, 4, 3, 7, 2, 7, 12, 3, 1, 7, 6, 1, 15, 8, 7, 15, 4, 17, 26, 6, 3, 17, 13, 2, 31, 42, 9, 7, 31, 21, 3, 15, 50, 30, 4, 1, 15, 25, 10, 1, 31, 16, 15, 31, 8, 37, 54, 12, 7, 37, 27, 4, 69, 88, 18, 17, 69, 44, 6, 37, 112, 63, 8, 3, 37, 56
OFFSET
0,4
COMMENTS
Here f(n,k) = b(2^k*(2n+1)) - Sum_{j=1..k} b(2^(j-1)*(2n+1))*R(k,j) for n >= 0, k >= 0 where b(n) = A329369(n) and where R(k,j) is the unique solution to b(2^k*(2^i-1)) = Sum_{j=1..k} b(2^(j-1)*(2^i-1))*R(k,j) for k > 0, 1 <= i <= k.
Row n length is A000120(n) + 1.
FORMULA
Conjectures: (Start)
f(2^k-1,k) = ((k+1)!)^2 for k >= 0.
R(k,j) = -Stirling1(k+2, j+1) for k > 0, 1 <= j <= k.
T(2^n-1, k) = Stirling2(n+1, k+1) for n >= 0, 0 <= k <= n.
T(n,k) = c(n,wt(n)-k) for n >= 0, 0 <= k <= wt(n) where c(2n+1,k) = c(n,k) + (wt(n)-k+2)*c(n,k-1), c(2n,k) = (wt(n)-k+1)*c(2n+1,k) for n > 0, k > 0 with c(n,0) = A341392(n) for n >= 0, c(0,k) = 0 for k > 0 and where wt(n) = A000120(n). (End)
EXAMPLE
Irregular table begins:
1;
1, 1;
3, 2;
1, 3, 1;
7, 4;
3, 7, 2;
7, 12, 3;
1, 7, 6, 1;
15, 8;
7, 15, 4;
17, 26, 6;
3, 17, 13, 2;
31, 42, 9;
7, 31, 21, 3;
15, 50, 30, 4;
1, 15, 25, 10, 1;
PROG
(PARI) upto(n) = my(A, v1); v1 = vector(n+1, i, 0); v1[1] = 1; for(i=1, n, v1[i+1] = v1[i\2+1] + if(i%2, 0, A = 1 << valuation(i/2, 2); v1[i/2-A+1] + v1[i-A+1])); v1 \\ from A329369
R(k) = my(v1, M1, M2); v1 = upto(2^k*(2^k-1)); M1 = matrix(k, k, i, j, v1[2^(j-1)*(2^i-1)+1]); M2 = matrix(k, 1, i, j, v1[2^k*(2^i-1)+1]); M1 = matsolve(M1, M2)
row(n) = my(A = hammingweight(n), v1, v2, v3); v1 = upto(2^A*(2*n+1)); v2 = vector(A, i, R(i)); v3 = vector(A, i, (v1[2^i*(2*n+1)+1] - sum(j=1, i, v1[2^(j-1)*(2*n+1)+1]*v2[i][j, 1]))/(v1[2^i*(2*(2^i-1)+1)+1] - sum(j=1, i, v1[2^(j-1)*(2*(2^i-1)+1)+1]*v2[i][j, 1]))); concat(v1[n+1], v3)
CROSSREFS
KEYWORD
nonn,base,tabf
AUTHOR
Mikhail Kurkov, Jan 03 2025
STATUS
approved