login
A379814
a(n) = sigma_2(n) * sigma_3(n).
3
1, 45, 280, 1533, 3276, 12600, 17200, 49725, 68887, 147420, 162504, 429240, 373660, 774000, 917280, 1596221, 1425060, 3099915, 2483320, 5022108, 4816000, 7312680, 6449040, 13923000, 10253901, 16814700, 16760800, 26367600, 20536380, 41277600, 28659904, 51117885
OFFSET
1,2
COMMENTS
See A379812 for more links and Ramanujan's general formula.
REFERENCES
Srinivasa Ramanujan, Collected papers, edited by G. H. Hardy et al., Chelsea, 1962, chapter 17, pp. 133-135.
LINKS
Srinivasa Ramanujan, Some formulae in the analytic theory of numbers, Messenger of Mathematics, Vol. 45 (1916), pp. 81-84.
FORMULA
a(n) = A001157(n) * A001158(n).
Multiplicative with a(p^e) = (p^(2*e+2)-1) * (p^(3*e+3)-1) / ((p^2-1) * (p^3-1)).
Dirichlet g.f.: zeta(s) * zeta(s-2) * zeta(s-3) * zeta(s-5) / zeta(2*s-5).
Sum_{k=1..n} a(k) ~ c * n^6 / 6, where c = zeta(3) * zeta(4) * zeta(6) / zeta(7) = Pi^10 * zeta(3) / (85050 * zeta(7)) = 1.31261826893951336264... .
MATHEMATICA
a[n_] := Times @@ DivisorSigma[{2, 3}, n]; Array[a, 50]
PROG
(PARI) a(n) = {my(f = factor(n)); sigma(f, 2) * sigma(f, 3); }
KEYWORD
nonn,easy,mult
AUTHOR
Amiram Eldar, Jan 03 2025
STATUS
approved