login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A081706
Numbers n such that binary representation ends either in an odd number of ones followed by one zero or in an even number of ones.
23
2, 3, 10, 11, 14, 15, 18, 19, 26, 27, 34, 35, 42, 43, 46, 47, 50, 51, 58, 59, 62, 63, 66, 67, 74, 75, 78, 79, 82, 83, 90, 91, 98, 99, 106, 107, 110, 111, 114, 115, 122, 123, 130, 131, 138, 139, 142, 143, 146, 147, 154, 155, 162, 163, 170, 171, 174, 175, 178, 179, 186
OFFSET
1,1
COMMENTS
Values of k such that the Motzkin number A001006(k) is even. Values of k such that the number of restricted hexagonal polyominoes with k+1 cells (A002212) is even.
Or union of sequences {2*A079523(n)+k}, k=0,1. A generalization see in comment to A161639. - Vladimir Shevelev, Jun 15 2009
Or intersection of sequences A121539 and {A121539(n)-1}. A generalization see in comment to A161890. - Vladimir Shevelev, Jul 03 2009
Also numbers n for which A010060(n+2) = A010060(n). - Vladimir Shevelev, Jul 06 2009
The asymptotic density of this sequence is 1/3 (Rowland and Yassawi, 2015; Burns, 2016). - Amiram Eldar, Jan 30 2021
Numbers of the form 4^k*(2*n-1)-2 and 4^k*(2*n-1)-1 where n and k are positive integers. - Michael Somos, Oct 22 2021
LINKS
Amiram Eldar, Table of n, a(n) for n = 1..10000 (terms 1..1000 from G. C. Greubel)
Jean-Paul Allouche, Thue, Combinatorics on words, and conjectures inspired by the Thue-Morse sequence, Journal de théorie des nombres de Bordeaux, Vol. 27, No. 2 (2015), pp. 375-388; arXiv preprint, arXiv:1401.3727 [math.NT], 2014.
Jean-Paul Allouche, André Arnold, Jean Berstel, Srećko Brlek, William Jockusch, Simon Plouffe and Bruce E. Sagan, A sequence related to that of Thue-Morse, Discrete Math., Vol. 139, No. 1-3 (1995), pp. 455-461.
Rob Burns, Asymptotic density of Motzkin numbers modulo small primes, arXiv:1611.04910 [math.NT], 2016.
Eric Rowland and Reem Yassawi, Automatic congruences for diagonals of rational functions, Journal de Théorie des Nombres de Bordeaux, Vol. 27, No. 1 (2015), pp. 245-288.
FORMULA
a(2n-1) = 2*A079523(n) = 4*A003159(n)-2; a(2n) = 4*A003159(n)-1.
Note that a(2n) = 1+a(2n-1).
MATHEMATICA
(* m = MotzkinNumber *) m[0] = 1; m[n_] := m[n] = m[n - 1] + Sum[m[k]*m[n - 2 - k], {k, 0, n - 2}]; Select[Range[200], Mod[m[#], 2] == 0 &] (* Jean-François Alcover, Jul 10 2013 *)
Select[Range[200], EvenQ@Hypergeometric2F1[3/2, -#, 3, 4]&] (* Vladimir Reshetnikov, Nov 02 2015 *)
PROG
(PARI) is(n)=valuation(bitor(n, 1)+1, 2)%2==0 \\ Charles R Greathouse IV, Mar 07 2013
(Python)
from itertools import count, islice
def A081706_gen(): # generator of terms
for n in count(0):
if (n&-n).bit_length()&1:
m = n<<2
yield m-2
yield m-1
A081706_list = list(islice(A081706_gen(), 30)) # Chai Wah Wu, Jan 09 2023
KEYWORD
nonn,base,easy
AUTHOR
STATUS
approved