login
The OEIS is supported by the many generous donors to the OEIS Foundation.

 

Logo
Hints
(Greetings from The On-Line Encyclopedia of Integer Sequences!)
A081706 Numbers n such that binary representation ends either in an odd number of ones followed by one zero or in an even number of ones. 23
2, 3, 10, 11, 14, 15, 18, 19, 26, 27, 34, 35, 42, 43, 46, 47, 50, 51, 58, 59, 62, 63, 66, 67, 74, 75, 78, 79, 82, 83, 90, 91, 98, 99, 106, 107, 110, 111, 114, 115, 122, 123, 130, 131, 138, 139, 142, 143, 146, 147, 154, 155, 162, 163, 170, 171, 174, 175, 178, 179, 186 (list; graph; refs; listen; history; text; internal format)
OFFSET
1,1
COMMENTS
Values of k such that the Motzkin number A001006(k) is even. Values of k such that the number of restricted hexagonal polyominoes with k+1 cells (A002212) is even.
Or union of sequences {2*A079523(n)+k}, k=0,1. A generalization see in comment to A161639. - Vladimir Shevelev, Jun 15 2009
Or intersection of sequences A121539 and {A121539(n)-1}. A generalization see in comment to A161890. - Vladimir Shevelev, Jul 03 2009
Also numbers n for which A010060(n+2) = A010060(n). - Vladimir Shevelev, Jul 06 2009
The asymptotic density of this sequence is 1/3 (Rowland and Yassawi, 2015; Burns, 2016). - Amiram Eldar, Jan 30 2021
Numbers of the form 4^k*(2*n-1)-2 and 4^k*(2*n-1)-1 where n and k are positive integers. - Michael Somos, Oct 22 2021
LINKS
Amiram Eldar, Table of n, a(n) for n = 1..10000 (terms 1..1000 from G. C. Greubel)
Jean-Paul Allouche, Thue, Combinatorics on words, and conjectures inspired by the Thue-Morse sequence, Journal de théorie des nombres de Bordeaux, Vol. 27, No. 2 (2015), pp. 375-388; arXiv preprint, arXiv:1401.3727 [math.NT], 2014.
Jean-Paul Allouche, André Arnold, Jean Berstel, Srećko Brlek, William Jockusch, Simon Plouffe and Bruce E. Sagan, A sequence related to that of Thue-Morse, Discrete Math., Vol. 139, No. 1-3 (1995), pp. 455-461.
Rob Burns, Asymptotic density of Motzkin numbers modulo small primes, arXiv:1611.04910 [math.NT], 2016.
Eric Rowland and Reem Yassawi, Automatic congruences for diagonals of rational functions, Journal de Théorie des Nombres de Bordeaux, Vol. 27, No. 1 (2015), pp. 245-288.
FORMULA
a(2n-1) = 2*A079523(n) = 4*A003159(n)-2; a(2n) = 4*A003159(n)-1.
Note that a(2n) = 1+a(2n-1).
MATHEMATICA
(* m = MotzkinNumber *) m[0] = 1; m[n_] := m[n] = m[n - 1] + Sum[m[k]*m[n - 2 - k], {k, 0, n - 2}]; Select[Range[200], Mod[m[#], 2] == 0 &] (* Jean-François Alcover, Jul 10 2013 *)
Select[Range[200], EvenQ@Hypergeometric2F1[3/2, -#, 3, 4]&] (* Vladimir Reshetnikov, Nov 02 2015 *)
PROG
(PARI) is(n)=valuation(bitor(n, 1)+1, 2)%2==0 \\ Charles R Greathouse IV, Mar 07 2013
(Python)
from itertools import count, islice
def A081706_gen(): # generator of terms
for n in count(0):
if (n&-n).bit_length()&1:
m = n<<2
yield m-2
yield m-1
A081706_list = list(islice(A081706_gen(), 30)) # Chai Wah Wu, Jan 09 2023
CROSSREFS
Sequence in context: A278742 A250174 A285622 * A359251 A032804 A248407
KEYWORD
nonn,base,easy
AUTHOR
STATUS
approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recents
The OEIS Community | Maintained by The OEIS Foundation Inc.

License Agreements, Terms of Use, Privacy Policy. .

Last modified April 23 18:16 EDT 2024. Contains 371916 sequences. (Running on oeis4.)