|
|
A346660
|
|
Number of cyclic patterns of length n that avoid the vincular pattern 23-1-4.
|
|
2
|
|
|
1, 1, 1, 2, 5, 14, 42, 133, 442, 1537, 5583, 21165, 83707, 345324, 1485687, 6663354, 31134078, 151408319, 765462514, 4017644518, 21860398111, 123120413119, 716701884408, 4305828784896, 26661920519485, 169937265101628, 1113616036893636, 7494786443901137
(list;
graph;
refs;
listen;
history;
text;
internal format)
|
|
|
OFFSET
|
0,4
|
|
COMMENTS
|
The vincular pattern 23-1-4 requires the 2 and the 3 to be adjacent.
By the trivial Wilf equivalence obtained by reversing the permutations, a(n) is also the number of cyclic patterns of length n that avoid the vincular pattern 32-4-1.
|
|
LINKS
|
Vaclav Kotesovec, Table of n, a(n) for n = 0..500
Rupert Li, Vincular Pattern Avoidance on Cyclic Permutations, arXiv:2107.12353 [math.CO], 2021.
|
|
FORMULA
|
For n >= 2, a(n) = Sum_{i=0..n-2} binomial(n-2,i) * A092920(i).
|
|
CROSSREFS
|
Cf. A025242, A047970, A092920, A346661.
Sequence in context: A340361 A308329 A202061 * A129086 A035052 A148330
Adjacent sequences: A346657 A346658 A346659 * A346661 A346662 A346663
|
|
KEYWORD
|
nonn
|
|
AUTHOR
|
Rupert Li, Aug 03 2021
|
|
STATUS
|
approved
|
|
|
|