login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A346659
Primes that are not of the form p*q +- 2 where p and q are primes (not necessarily distinct).
1
3, 5, 29, 43, 61, 73, 101, 103, 107, 137, 149, 151, 173, 191, 193, 197, 227, 229, 241, 271, 277, 281, 283, 313, 347, 349, 421, 431, 433, 457, 461, 463, 523, 569, 601, 607, 617, 619, 641, 643, 659, 661, 727, 821, 823, 827, 857, 859, 883, 929, 1019, 1021, 1031
OFFSET
1,1
COMMENTS
Conjecture: this sequence is infinite.
LINKS
EXAMPLE
2 is not a term because 2 = 2*2 - 2.
3 is a term because neither 1 (3-2) nor 5 (3+2) is a product of two primes.
MAPLE
q:= n-> andmap(x-> numtheory[bigomega](x)<>2, [n-2, n+2]):
select(q, [ithprime(i)$i=1..200])[]; # Alois P. Heinz, Jul 30 2021
MATHEMATICA
Select[Range[3, 1000], PrimeQ[#] && PrimeOmega[# - 2] != 2 && PrimeOmega[# + 2] != 2 &] (* Amiram Eldar, Jul 29 2021 *)
PROG
(Python)
from sympy import factorint, primerange
def semiprime(n): return sum(e for e in factorint(n).values()) == 2
def ok(p): return not semiprime(p-2) and not semiprime(p+2)
def aupto(limit): return list(filter(ok, primerange(1, limit+1)))
print(aupto(1031)) # Michael S. Branicky, Jul 29 2021
CROSSREFS
Cf. A207526 (complementary sequence).
Sequence in context: A272345 A356147 A364762 * A067200 A106089 A303971
KEYWORD
nonn
AUTHOR
Marcin Barylski, Jul 27 2021
EXTENSIONS
More terms from Michael S. Branicky, Jul 29 2021
STATUS
approved