The OEIS Foundation is supported by donations from users of the OEIS and by a grant from the Simons Foundation.

 Hints (Greetings from The On-Line Encyclopedia of Integer Sequences!)
 A346659 Primes that are not of the form p*q +- 2 where p and q are primes (not necessarily distinct). 0
 3, 5, 29, 43, 61, 73, 101, 103, 107, 137, 149, 151, 173, 191, 193, 197, 227, 229, 241, 271, 277, 281, 283, 313, 347, 349, 421, 431, 433, 457, 461, 463, 523, 569, 601, 607, 617, 619, 641, 643, 659, 661, 727, 821, 823, 827, 857, 859, 883, 929, 1019, 1021, 1031 (list; graph; refs; listen; history; text; internal format)
 OFFSET 1,1 COMMENTS Conjecture: this sequence is infinite. LINKS EXAMPLE 2 is not a term because 2 = 2*2 - 2. 3 is a term because neither 1 (3-2) nor 5 (3+2) is a product of two primes. MAPLE q:= n-> andmap(x-> numtheory[bigomega](x)<>2, [n-2, n+2]): select(q, [ithprime(i)\$i=1..200])[];  # Alois P. Heinz, Jul 30 2021 MATHEMATICA Select[Range[3, 1000], PrimeQ[#] && PrimeOmega[# - 2] != 2 && PrimeOmega[# + 2] != 2 &] (* Amiram Eldar, Jul 29 2021 *) PROG (Python) from sympy import factorint, primerange def semiprime(n): return sum(e for e in factorint(n).values()) == 2 def ok(p): return not semiprime(p-2) and not semiprime(p+2) def aupto(limit): return list(filter(ok, primerange(1, limit+1))) print(aupto(1031)) # Michael S. Branicky, Jul 29 2021 CROSSREFS Cf. A207526 (complementary sequence). Sequence in context: A141578 A327748 A272345 * A067200 A106089 A303971 Adjacent sequences:  A346656 A346657 A346658 * A346660 A346661 A346663 KEYWORD nonn AUTHOR Marcin Barylski, Jul 27 2021 EXTENSIONS More terms from Michael S. Branicky, Jul 29 2021 STATUS approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent
The OEIS Community | Maintained by The OEIS Foundation Inc.

Last modified November 27 20:49 EST 2021. Contains 349395 sequences. (Running on oeis4.)