login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A364762
G.f. satisfies A(x) = 1 / (1 + x*(1 + x*A(x))^4).
4
1, -1, -3, 5, 29, -42, -349, 384, 4705, -3307, -67530, 19392, 1006479, 140594, -15356600, -8897336, 237691865, 246737931, -3708348277, -5655844305, 58027927950, 119178376245, -906834380800, -2396063640645, 14094956420555, 46748815762429, -216921227330074
OFFSET
0,3
FORMULA
a(n) = (1/(n+1)) * Sum_{k=0..n} (-1)^k * binomial(n+1,k) * binomial(4*k,n-k).
D-finite with recurrence -128*(2042050230119155915444*n -5429570252206459161379) *(4*n-1) *(2*n-1) *(4*n+5)*(n+1)*a(n) -32*(4*n+1) *(65345607363812989294208*n^4 -820413627047532146653920*n^3 +2763432436839800464356384*n^2 -2486292999757610914452558*n +135739256305161479034475)*a(n-1) +8*(25399908186485156187685696*n^5 -410520476995365688927070656*n^4 +1936659722310862831127714364*n^3 -3768407393014943668311778228*n^2 +3142503008733048326160670659*n -930530980753641871942147310)*a(n-2) +8*(60470966262814634790914176*n^5 -790603842787360719473560256*n^4 +4054580849567079779066278696*n^3 -10338573837841237994265694136*n^2 +13166278761352336081219763480*n-6688902526339456521313590345) *a(n-3) +8*(n-3) *(889289782697551916285417600*n^4 -9728080580320392023685701600*n^3 +38817722034818423528174576784*n^2 -65825556954123813925639696248*n +38902971323615633483566471005) *a(n-4) +8*(n-3) *(n-4)*(2097428215364339549126292456*n^3 -18251533871703386700639649538*n^2 +48220538425138794332555786686*n -34290240482247293887531480365) *a(n-5) +32*(n-3) *(n-4)*(n-5) *(468447167338832041688699407*n^2 -2522399644542316934351318150*n +2141819455274094692083493160) *a(n-6) +3381*(1381857597101978034513050*n -1395473045717316216699133) *(n-3)*(n-4) *(n-5)*(n-6)*a(n-7)=0. - R. J. Mathar, Aug 10 2023
MAPLE
A364762 := proc(n)
add( (-1)^k*binomial(n+1, k) * binomial(4*k, n-k), k=0..n) ;
%/(n+1) ;
end proc:
seq(A364762(n), n=0..80); # R. J. Mathar, Aug 10 2023
MATHEMATICA
nmax = 26; A[_] = 1;
Do[A[x_] = 1/(1 + x*(1 + x*A[x])^4) + O[x]^(nmax+1) // Normal, {nmax}];
CoefficientList[A[x], x] (* Jean-François Alcover, Oct 25 2023 *)
PROG
(PARI) a(n) = sum(k=0, n, (-1)^k*binomial(n+1, k)*binomial(4*k, n-k))/(n+1);
CROSSREFS
KEYWORD
sign
AUTHOR
Seiichi Manyama, Aug 05 2023
STATUS
approved