login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

a(n) = n!*(n+1)!.
51

%I #119 Sep 13 2024 11:29:40

%S 1,2,12,144,2880,86400,3628800,203212800,14631321600,1316818944000,

%T 144850083840000,19120211066880000,2982752926433280000,

%U 542861032610856960000,114000816848279961600000,27360196043587190784000000,7441973323855715893248000000

%N a(n) = n!*(n+1)!.

%C Let M_n be the symmetrical n X n matrix M_n(i,j)=1/min(i,j); then for n>=0 det(M_n)=(-1)^(n-1)/a(n-1). - _Benoit Cloitre_, Apr 27 2002

%C If n women and n men are to be seated around a circular table, with no two of the same sex seated next to each other, the number of possible arrangements is a(n-1). - _Ross La Haye_, Jan 06 2009

%C a(n-1) is also the number of (directed) Hamiltonian cycles in the complete bipartite graph K_{n,n}. - _Eric W. Weisstein_, Jul 15 2011

%C a(n) is also number of ways to place k nonattacking semi-bishops on an n X n board, sum over all k>=0 (for definition see A187235). - _Vaclav Kotesovec_, Dec 06 2011

%C a(n) is number of permutations of {1,2,3,...,2n} such that no odd numbers are adjacent. - _Ran Pan_, May 23 2015

%C a(n) is number of permutations of {1,2,3,...,2n+1} such that no odd numbers are adjacent. - _Ran Pan_, May 23 2015

%C a(n-1) is the number of elements of the wreath product of S_n and S_2 with cycle partition equal to (2n), where S_n is the symmetric group of order n. - _Josaphat Baolahy_, Mar 12 2024

%D J. H. Conway and R. K. Guy, The Book of Numbers, Copernicus Press, NY, 1996, pp. 63-65.

%D Kenneth H. Rosen, Editor-in-Chief, Handbook of Discrete and Combinatorial Mathematics, CRC Press, 2000, page 91. [_Ross La Haye_, Jan 06 2009]

%H T. D. Noe, <a href="/A010790/b010790.txt">Table of n, a(n) for n = 0..100</a>

%H J. Agapito, <a href="http://dx.doi.org/10.1016/j.laa.2014.03.018">On symmetric polynomials with only real zeros and nonnegative gamma-vectors</a>, Linear Algebra and its Applications, Volume 451, 15 June 2014, Pages 260-289.

%H Steve Gadbois, <a href="https://doi.org/10.1017/mag.2020.54">104.12 From calendar coincidence to factorials to Ramanujan</a>, The Mathematical Gazette (2020) Vol. 104, Issue 560, 304-306.

%H Anatol N. Kirillov, <a href="https://doi.org/10.3842/SIGMA.2016.002">On some quadratic algebras. I 1/2: Combinatorics of Dunkl and Gaudin elements, Schubert, Grothendieck, Fuss-Catalan, universal Tutte and reduced polynomials</a>, SIGMA, Symmetry Integrability Geom. Methods Appl. 12, Paper 002, 172 p. (2016).

%H Vaclav Kotesovec, <a href="https://oeis.org/wiki/User:Vaclav_Kotesovec">Non-attacking chess pieces</a>, 6ed, 2013, p. 268.

%H S. Tanimoto, <a href="http://dx.doi.org/10.1007/s00026-010-0064-3">Parity alternating permutations and signed Eulerian numbers</a>, Ann. Comb. 14 (2010) 355 (total number of PAPs of [2n+1].)

%H Eric Weisstein's World of Mathematics, <a href="http://mathworld.wolfram.com/CompleteBipartiteGraph.html">Complete Bipartite Graph</a>

%H Eric Weisstein's World of Mathematics, <a href="http://mathworld.wolfram.com/HamiltonianCycle.html">Hamiltonian Cycle</a>

%H Shawn L. Witte, <a href="https://www.math.ucdavis.edu/~tdenena/dissertations/201910_Witte_Dissertation.pdf">Link Nomenclature, Random Grid Diagrams, and Markov Chain Methods in Knot Theory</a>, Ph. D. Dissertation, University of California-Davis (2020).

%H <a href="/index/Fa#factorial">Index entries for sequences related to factorial numbers</a>

%F From _Karol A. Penson_, Oct 23 2001: (Start)

%F Integral representation as n-th moment of a positive function f on the positive half axis, where f(x) = 2*sqrt(x)*BesselK(1, 2*sqrt(x)). Then:

%F a(n) = Integral_{x>=0} x^n * f(x) dx.

%F G.f.: a(0) = 1 and a(n) = subs(x=0, n!*diff(1/((x-1)^2), x$n)) for n >= 1. (End)

%F Sum_{i >=0} 1/a(i) = A096789. - _Gerald McGarvey_, Jun 10 2004

%F With b(n)=A002378(n) for n>0 and b(0)=1, a(n) = b(n)*b(n-1)...*b(0). - _Tom Copeland_, Sep 21 2011

%F a(n) = det(PS(i+1,j), 1 <= i,j <= n), where PS(n,k) are Legendre-Stirling numbers of the second kind. - _Mircea Merca_, Apr 04 2013

%F a(n) = (2*n)! / A000108(n) which implies that the e.g.f. of A126120 is Sum_{k>=0} x^(2*k) / a(k). - _Michael Somos_, Nov 15 2014

%F 0 = a(n)*(+18*a(n+2) - 15*a(n+3) + a(n+4)) + a(n+1)*(-9*a(n+2) - 4*a(n+3)) + a(n+2)*(+3*a(n+2)) for all n>=0. - _Michael Somos_, Nov 15 2014

%F From _Ilya Gutkovskiy_, Jan 20 2017: (Start)

%F a(n) ~ 2*Pi*n^(2*n+2)/exp(2*n).

%F Sum_{n>=0} (-1)^n/a(n) = BesselJ(1,2) = 0.576724807756873387202448... = A348607 (End)

%F D-finite with recurrence: a(n) -n*(n+1)*a(n-1)=0. - _R. J. Mathar_, Jan 27 2020

%F a(n) = 1/([x^n] hypergeom([], [2], x)). - _Peter Luschny_, Sep 13 2024

%e G.f. = 1 + 2*x + 12*x^2 + 144*x^3 + 2880*x^4 + 86400*x^5 + ...

%p f:= n-> n!*(n+1)!: seq(f(n), n=0..30);

%t s=1;lst={s};Do[s+=(s*=n)*n;AppendTo[lst, s], {n, 1, 4!, 1}];lst (* _Vladimir Joseph Stephan Orlovsky_, Nov 15 2008 *)

%t Times@@@Partition[Range[0,25]!,2,1] (* _Harvey P. Dale_, Jun 17 2011 *)

%o (Sage) [stirling_number1(n,1)*factorial (n-2) for n in range(2, 17)] # _Zerinvary Lajos_, Jul 07 2009

%o (PARI) a(n)= n!^2*(n+1) \\ _Charles R Greathouse IV_, Jul 31 2011

%o (Magma) [Factorial(n)*Factorial(n+1): n in [0..20]]; // _Vincenzo Librandi_, Aug 08 2014

%o (Python)

%o from math import factorial

%o def A010790(n): return factorial(n)**2*(n+1) # _Chai Wah Wu_, Apr 22 2024

%Y Second column of triangle A129065.

%Y Cf. A004737, A000290, A000108, A126120.

%K nonn,nice,easy

%O 0,2

%A _N. J. A. Sloane_