login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A090438
Generalized Stirling2 array (4,2).
14
1, 12, 8, 1, 360, 480, 180, 24, 1, 20160, 40320, 25200, 6720, 840, 48, 1, 1814400, 4838400, 4233600, 1693440, 352800, 40320, 2520, 80, 1, 239500800, 798336000, 898128000, 479001600, 139708800, 23950080, 2494800, 158400, 5940, 120, 1
OFFSET
1,2
COMMENTS
The row length sequences for this array is [1,3,5,7,9,11,...] = A005408(n-1), n>=1.
The scaled array a(n,k)/((2*n)!/k!) = A034870(n-1,k-2), n>=1, 2<=k<=2*n (Pascal triangle, even numbered rows only).
LINKS
P. Blasiak, K. A. Penson and A. I. Solomon, The general boson normal ordering problem, Phys. Lett. A 309 (2003) 198-205.
W. Lang, First 6 rows.
FORMULA
Recursion: a(n, k) = sum(binomial(2, p)*fallfac(2*(n-1)-p+k, 2-p)*a(n-1, k-p), p=0..2), n>=2, 2<=k<=2*n, a(1, 2)=1, else 0. Rewritten from eq.(19) of the Schork reference with r=4, s=2. fallfac(n, m) := A008279(n, m) (falling factorials triangle).
a(n, k) = (((-1)^k)/k!)*sum(((-1)^p)*binomial(k, p)*product(fallfac(p+2*(j-1), 2), j=1..n), p=2..k), n>=1, 2<=k<=2*n, else 0. From eq. (12) of the Blasiak et al. reference with r=4, s=2.
a(n, k) = ((2*n)!/k!)*binomial(2*(n-1), k-2), n>=1, 2<=k<=2*n.
E.g.f. column k>=2 (with leading zeros): (((-1)^k)/k!)*(sum(((-1)^p)*binomial(k, p)*hypergeom([(p-1)/2, p/2], [], 4*x), p=2..k)-(k-1)).
Coefficient triangle of the polynomials (2*n+2)!*hypergeom([-2*n],[3],-x)/2. - Peter Luschny, Apr 08 2015
Coefficient triangle of Laguerre polynomials (2*n)!*L(2*n,2,-x)). - Peter Luschny, Apr 08 2015
MAPLE
with(PolynomialTools):
p := n -> (2*n+2)!*hypergeom([-2*n], [3], -x)/2:
seq(CoefficientList(simplify(p(n)), x), n=0..5); # Peter Luschny, Apr 08 2015
MATHEMATICA
a[n_, k_] := (-1)^k/k!*Sum[(-1)^p*Binomial[k, p]*Product[FactorialPower[p + 2*(j-1), 2], {j, 1, n}], {p, 2, k}]; Table[a[n, k], {n, 1, 8}, {k, 2, 2 n}] // Flatten (* Jean-François Alcover, Sep 01 2016 *)
CROSSREFS
Cf. A078740 (3, 2)-Stirling2.
Cf. A072678 (row sums), A090439 (alternating row sums).
Cf. A062139.
Sequence in context: A319406 A038333 A185259 * A346223 A128108 A071279
KEYWORD
nonn,easy,tabf
AUTHOR
Wolfdieter Lang, Dec 23 2003
STATUS
approved