Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).
%I #16 Feb 13 2022 09:25:22
%S 1,1,1,1,1,1,1,2,2,1,1,6,12,6,1,1,24,144,144,24,1,1,120,2880,8640,
%T 2880,120,1,1,720,86400,1036800,1036800,86400,720,1,1,5040,3628800,
%U 217728000,870912000,217728000,3628800,5040,1,1,40320,203212800,73156608000
%N Symmetric triangle of certain normalized products of decreasing factorials.
%C Similar to, but different from, superfactorial Pascal triangle A009963.
%C A009963(n,m) = (Product_{p=0..m-1} (n-p)!)/superfac(m) with n >= m >= 0, otherwise 0.
%H Wolfdieter Lang, <a href="/A090441/a090441.txt">First 9 rows</a>.
%F a(n, m) = 0 if n < m-1;
%F a(n, m) = 1 if m = 0 or n = -1;
%F a(n, m) = (Product_{p=0..m-1} (n-p)!)/superfac(m-1) if n >= 0, 1 <= m <= n+1, where superfac(n) := A000178(n), n >= 0, (superfactorials).
%F Equals ConvOffsStoT transform of the factorials, A000142: (1, 1, 2, 6, 24, ...); e.g., ConvOffs transform of (1, 1, 2, 6) = (1, 6, 12, 6, 1). - _Gary W. Adamson_, Apr 21 2008
%e Rows for n = -1, 0, 1, 2, 3, ...:
%e 1;
%e 1, 1;
%e 1, 1, 1;
%e 1, 2, 2, 1;
%e 1, 6, 12, 6, 1;
%e ...
%Y Column sequences give: A000012 (powers of 1), A000142 (factorials), A010790, A090443-4, etc.
%Y Cf. A090445 (row sums), A090446 (alternating row sums).
%K nonn,easy,tabl
%O -1,8
%A _Wolfdieter Lang_, Dec 23 2003