|
|
A283661
|
|
Number of nX3 0..1 arrays with no element unequal to more than four of its king-move neighbors, with the exception of exactly two elements, and with new values introduced in order 0 sequentially upwards.
|
|
1
|
|
|
0, 0, 2, 403, 5432, 50383, 376594, 2523328, 15678950, 92540669, 525521458, 2897445052, 15603404826, 82436634866, 428677061179, 2199549650523, 11157737477245, 56044262037178, 279089683048905, 1379308291464963
(list;
graph;
refs;
listen;
history;
text;
internal format)
|
|
|
OFFSET
|
1,3
|
|
COMMENTS
|
Column 3 of A283666.
|
|
LINKS
|
R. H. Hardin, Table of n, a(n) for n = 1..210
|
|
FORMULA
|
Empirical: a(n) = 9*a(n-1) -6*a(n-2) -108*a(n-3) +81*a(n-4) +582*a(n-5) -17*a(n-6) -1182*a(n-7) +129*a(n-8) +1506*a(n-9) -1575*a(n-10) -2145*a(n-11) +2860*a(n-12) +1518*a(n-13) -3537*a(n-14) +920*a(n-15) +4419*a(n-16) -2706*a(n-17) -1705*a(n-18) +3144*a(n-19) -243*a(n-20) -2955*a(n-21) +1653*a(n-22) +135*a(n-23) -1495*a(n-24) +486*a(n-25) +18*a(n-26) -324*a(n-27) +54*a(n-28) -27*a(n-30) for n>34
|
|
EXAMPLE
|
Some solutions for n=4
..0..1..1. .0..1..1. .0..0..0. .0..1..1. .0..0..0. .0..1..1. .0..1..1
..1..0..0. .1..0..0. .1..0..0. .1..0..0. .1..1..0. .0..1..0. .0..1..0
..1..0..1. .1..0..1. .0..0..1. .1..1..0. .1..0..1. .0..1..0. .0..1..1
..1..1..1. .1..0..1. .1..0..0. .1..0..0. .1..0..0. .0..1..1. .0..1..0
|
|
CROSSREFS
|
Cf. A283666.
Sequence in context: A281650 A324403 A214597 * A067827 A070269 A352837
Adjacent sequences: A283658 A283659 A283660 * A283662 A283663 A283664
|
|
KEYWORD
|
nonn
|
|
AUTHOR
|
R. H. Hardin, Mar 13 2017
|
|
STATUS
|
approved
|
|
|
|