login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A293290
a(n) = Product_{1 <= j <= k <= n} (k^2 + j^2).
5
1, 2, 80, 187200, 50918400000, 2675955409920000000, 40702283662588674048000000000, 250658664786823821917343252480000000000000, 832906513114759565863066815448211678822400000000000000000, 1919381816160714520414106848157314737202346840876384256000000000000000000000
OFFSET
0,2
FORMULA
a(n) ~ sqrt(Gamma(1/4)) * Pi^(-1/8) * 2^(n^2/2 + n - 1/8) * exp(Pi*n*(n+1)/4 - 3*n^2/2 - n + Pi/24) * n^(n*(n+1) + 1/4). - Vaclav Kotesovec, Feb 26 2019
MATHEMATICA
Table[Product[k^2 + j^2, {k, 1, n}, {j, 1, k}], {n, 0, 10}]
PROG
(Sage) [prod([prod([k^2+j^2 for j in range(1, k+1)]) for k in range(1, n+1)]) for n in range(10)] # Danny Rorabaugh, Oct 16 2017
CROSSREFS
Suggested by Omar E. Pol from A264596 formula.
Sequence in context: A156932 A291331 A369468 * A056972 A051391 A041799
KEYWORD
easy,nonn
AUTHOR
Velin Yanev, Oct 05 2017
STATUS
approved