login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A367969
Number of partitions of [n] whose block maxima sum to k, where k is chosen so as to maximize this number.
4
1, 1, 1, 2, 5, 11, 37, 129, 431, 1921, 9544, 43844, 223512, 1407320, 8519457, 52422985, 373424140, 2685768084, 20354852852, 160370778238, 1318493838635, 11239312718146, 98700416575613, 916309760098349, 8735277842452542, 84921152781222758, 860903677319960583
OFFSET
0,4
LINKS
EXAMPLE
a(5) = 11 = A367955(5,12) is the largest value in row 5 of A367955 and counts the partitions of [5] having block maxima sum 12: 123|4|5, 124|3|5, 125|3|4, 13|24|5, 13|25|4, 14|23|5, 15|23|4, 14|25|3, 15|24|3, 1|2|34|5, 1|2|35|4.
MAPLE
b:= proc(n, m) option remember; `if`(n=0, 1,
b(n-1, m)*m + expand(x^n*b(n-1, m+1)))
end:
a:= n-> max(coeffs(b(n, 0))):
seq(a(n), n=0..30);
# second Maple program:
b:= proc(n, i, t) option remember; `if`(i*(i+1)/2<n, 0,
`if`(n=0, t^i, `if`(t=0, 0, t*b(n, i-1, t))+
(t+1)^max(0, 2*i-n-1)*b(n-i, min(n-i, i-1), t+1)))
end:
a:= n-> max(seq(b(k, n, 0), k=n..n*(n+1)/2)):
seq(a(n), n=0..30);
MATHEMATICA
b[n_, m_] := b[n, m] = If[n == 0, 1, b[n-1, m]*m + Expand[x^n*b[n-1, m+1]]];
a[n_] := Max[CoefficientList[b[n, 0], x]];
Table[a[n], {n, 0, 30}]
(* second program: *)
b[n_, i_, t_] := b[n, i, t] = If[i*(i + 1)/2 < n, 0, If[n == 0, t^i, If[t == 0, 0, t*b[n, i - 1, t]] + (t + 1)^Max[0, 2*i - n - 1]*b[n - i, Min[n - i, i - 1], t + 1]]];
a[n_] := If[n == 0, 1, Max[Table[b[k, n, 0], { k, n, n*(n + 1)/2}]]];
Table[a[n], {n, 0, 30}] (* Jean-François Alcover, Dec 13 2023, after Alois P. Heinz *)
CROSSREFS
Row maxima of A367955.
Sequence in context: A074497 A131581 A195985 * A056301 A001344 A056302
KEYWORD
nonn
AUTHOR
Alois P. Heinz, Dec 06 2023
STATUS
approved