login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A365903
Number of partitions of [n] whose block minima sum to k, where k is chosen so as to maximize this number.
3
1, 1, 1, 2, 4, 10, 29, 101, 367, 1562, 6891, 37871, 197930, 1121634, 6888085, 46190282, 323250987, 2349020516, 17897285514, 142512956148, 1178963284732, 10248806222398, 91421283039658, 847666112839362, 8100455404172267, 79925567946537362, 814508927747776069
OFFSET
0,4
LINKS
MAPLE
b:= proc(n, i, t, m) option remember; `if`(n=0, t^(m-i+1),
`if`((i+m)*(m+1-i)/2<n or i>n, 0, `if`(t=0, 0,
t*b(n, i+1, t, m))+ b(n-i, i+1, t+1, m)))
end:
a:= n-> max(seq(b(k, 1, 0, n), k=0..n*(n+1)/2)):
seq(a(n), n=0..26);
# second Maple program:
a:= proc(h) option remember; local b; b:=
proc(n, m) option remember; `if`(n=0, 1,
b(n-1, m)*m + expand(x^(h-n+1)*b(n-1, m+1)))
end: forget(b); max(coeffs(b(h, 0)))
end:
seq(a(n), n=0..26);
MATHEMATICA
Q[1, t_, s_] := t*s;
Q[n_, t_, s_] := Q[n, t, s] = s*D[Q[n-1, t, s], s] + s*t^n*Q[n-1, t, s] // Expand;
P[n_, t_] := Module[{s}, Q[n, t, s] /. s -> 1];
a[n_] := If[n == 0, 1, Module[{t}, CoefficientList[P[n, t], t] // Max]];
Table[a[n], {n, 0, 26}] (* Jean-François Alcover, Oct 03 2024 *)
CROSSREFS
Row maxima of A124327.
Cf. A367969.
Sequence in context: A261041 A047051 A271077 * A126349 A076315 A304124
KEYWORD
nonn
AUTHOR
Alois P. Heinz, Dec 14 2023
STATUS
approved