login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A271077
Number of pseudocomplemented lattices on n nodes.
0
1, 1, 1, 1, 2, 4, 10, 29, 99, 391, 1775, 9214
OFFSET
0,5
LINKS
R. Belohlavek, V. Vychodil, Residuated lattices of size <=12, Order 27 (2010) 147-161 doi:10.1007/s11083-010-9143-7, Table 6.
Wikipedia, pseudocomplement.
PROG
(SageMath)
for i in range(0, 12):
n = 0
for P in Posets(i):
if P.is_lattice():
L = LatticePoset(P)
if L.is_pseudocomplemented():
n += 1
print(n)
CROSSREFS
Cf. A006966.
Sequence in context: A279552 A261041 A047051 * A365903 A126349 A076315
KEYWORD
nonn,hard,more
AUTHOR
Jori Mäntysalo, Mar 30 2016
STATUS
approved