login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A367971
Expansion of e.g.f. exp(exp(-x) - 1)/(1 - x).
1
1, 0, 2, 1, 19, 43, 461, 2350, 22940, 185313, 1969105, 20981585, 255992617, 3300259584, 46394533498, 694535043925, 11123040844947, 189008829494295, 3402841007703469, 64648146404160854, 1293014652241452452, 27152832827254344741, 597366828915334031625
OFFSET
0,3
FORMULA
a(0) = 1; a(n) = Sum_{k=1..n} ((k-1)! + (-1)^k) * binomial(n-1,k-1) * a(n-k).
a(n) = n! * Sum_{k=0..n} (-1)^k * Bell(k)/k!, where Bell() is A000110.
PROG
(PARI) a_vector(n) = my(v=vector(n+1)); v[1]=1; for(i=1, n, v[i+1]=sum(j=1, i, ((j-1)!+(-1)^j)*binomial(i-1, j-1)*v[i-j+1])); v;
CROSSREFS
KEYWORD
nonn
AUTHOR
Seiichi Manyama, Dec 06 2023
STATUS
approved