login
The OEIS Foundation is supported by donations from users of the OEIS and by a grant from the Simons Foundation.

 

Logo


Hints
(Greetings from The On-Line Encyclopedia of Integer Sequences!)
A247255 Triangular array read by rows: T(n,k) is the number of weakly unimodal partitions of n in which the greatest part occurs exactly k times, n>=1, 1<=k<=n. 12
1, 1, 1, 3, 0, 1, 6, 1, 0, 1, 12, 2, 0, 0, 1, 21, 4, 1, 0, 0, 1, 38, 6, 2, 0, 0, 0, 1, 63, 11, 3, 1, 0, 0, 0, 1, 106, 16, 5, 2, 0, 0, 0, 0, 1, 170, 27, 7, 3, 1, 0, 0, 0, 0, 1, 272, 40, 11, 4, 2, 0, 0, 0, 0, 0, 1, 422, 63, 16, 6, 3, 1, 0, 0, 0, 0, 0, 1, 653, 92, 24, 8, 4, 2, 0, 0, 0, 0, 0, 0, 1, 986, 141, 34, 12, 5, 3, 1, 0, 0, 0, 0, 0, 0, 1 (list; table; graph; refs; listen; history; text; internal format)
OFFSET

1,4

COMMENTS

These are called stack polyominoes in the Flajolet and Sedgewick reference.

REFERENCES

P. Flajolet and R Sedgewick, Analytic Combinatorics, Cambridge Univ. Press, 2009, page 46.

LINKS

Alois P. Heinz, Rows n = 1..141, flattened

FORMULA

G.f.: Sum_{k>=1} y*x^k/(1 - y*x^k)/(Product_{i=1..k-1} (1 - x^i))^2.

For fixed k>=1, T(n,k) ~ Pi^(k-1) * (k-1)! * exp(2*Pi*sqrt(n/3)) / (2^(k+2) * 3^(k/2 + 1/4) * n^(k/2 + 3/4)). - Vaclav Kotesovec, Oct 24 2018

EXAMPLE

    1;

    1,  1;

    3,  0, 1;

    6,  1, 0, 1;

   12,  2, 0, 0, 1;

   21,  4, 1, 0, 0, 1;

   38,  6, 2, 0, 0, 0, 1;

   63, 11, 3, 1, 0, 0, 0, 1;

  106, 16, 5, 2, 0, 0, 0, 0, 1;

  170, 27, 7, 3, 1, 0, 0, 0, 0, 1;

MAPLE

b:= proc(n, i) option remember; local r; expand(

      `if`(i>n, 0, `if`(irem(n, i, 'r')=0, x^r, 0)+

      add(b(n-i*j, i+1)*(j+1), j=0..n/i)))

    end:

T:= n-> (p-> seq(coeff(p, x, i), i=1..n))(b(n, 1)):

seq(T(n), n=1..14);  # Alois P. Heinz, Nov 29 2014

MATHEMATICA

nn = 14; Table[

  Take[Drop[

     CoefficientList[

      Series[ Sum[

        u z^k/(1 - u z^k) Product[1/(1 - z^i), {i, 1, k - 1}]^2, {k,

         1, nn}], {z, 0, nn}], {z, u}], 1], n, {2, n + 1}][[n]], {n,

   1, nn}] // Grid

CROSSREFS

Columns k=1-10 give: A006330, A114921, A226541, A320315, A320316, A320317, A320318, A320319, A320320, A320321.

Row sums give A001523.

Main diagonal gives A000012.

Sequence in context: A210663 A102765 A129684 * A105147 A111924 A212880

Adjacent sequences:  A247252 A247253 A247254 * A247256 A247257 A247258

KEYWORD

nonn,tabl

AUTHOR

Geoffrey Critzer, Nov 29 2014

STATUS

approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent
The OEIS Community | Maintained by The OEIS Foundation Inc.

License Agreements, Terms of Use, Privacy Policy. .

Last modified January 28 13:13 EST 2020. Contains 331321 sequences. (Running on oeis4.)