login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A247255
Triangular array read by rows: T(n,k) is the number of weakly unimodal partitions of n in which the greatest part occurs exactly k times, n>=1, 1<=k<=n.
12
1, 1, 1, 3, 0, 1, 6, 1, 0, 1, 12, 2, 0, 0, 1, 21, 4, 1, 0, 0, 1, 38, 6, 2, 0, 0, 0, 1, 63, 11, 3, 1, 0, 0, 0, 1, 106, 16, 5, 2, 0, 0, 0, 0, 1, 170, 27, 7, 3, 1, 0, 0, 0, 0, 1, 272, 40, 11, 4, 2, 0, 0, 0, 0, 0, 1, 422, 63, 16, 6, 3, 1, 0, 0, 0, 0, 0, 1, 653, 92, 24, 8, 4, 2, 0, 0, 0, 0, 0, 0, 1, 986, 141, 34, 12, 5, 3, 1, 0, 0, 0, 0, 0, 0, 1
OFFSET
1,4
COMMENTS
These are called stack polyominoes in the Flajolet and Sedgewick reference.
REFERENCES
P. Flajolet and R Sedgewick, Analytic Combinatorics, Cambridge Univ. Press, 2009, page 46.
LINKS
FORMULA
G.f.: Sum_{k>=1} y*x^k/(1 - y*x^k)/(Product_{i=1..k-1} (1 - x^i))^2.
For fixed k>=1, T(n,k) ~ Pi^(k-1) * (k-1)! * exp(2*Pi*sqrt(n/3)) / (2^(k+2) * 3^(k/2 + 1/4) * n^(k/2 + 3/4)). - Vaclav Kotesovec, Oct 24 2018
EXAMPLE
1;
1, 1;
3, 0, 1;
6, 1, 0, 1;
12, 2, 0, 0, 1;
21, 4, 1, 0, 0, 1;
38, 6, 2, 0, 0, 0, 1;
63, 11, 3, 1, 0, 0, 0, 1;
106, 16, 5, 2, 0, 0, 0, 0, 1;
170, 27, 7, 3, 1, 0, 0, 0, 0, 1;
MAPLE
b:= proc(n, i) option remember; local r; expand(
`if`(i>n, 0, `if`(irem(n, i, 'r')=0, x^r, 0)+
add(b(n-i*j, i+1)*(j+1), j=0..n/i)))
end:
T:= n-> (p-> seq(coeff(p, x, i), i=1..n))(b(n, 1)):
seq(T(n), n=1..14); # Alois P. Heinz, Nov 29 2014
MATHEMATICA
nn = 14; Table[
Take[Drop[
CoefficientList[
Series[ Sum[
u z^k/(1 - u z^k) Product[1/(1 - z^i), {i, 1, k - 1}]^2, {k,
1, nn}], {z, 0, nn}], {z, u}], 1], n, {2, n + 1}][[n]], {n,
1, nn}] // Grid
CROSSREFS
Row sums give A001523.
Main diagonal gives A000012.
Sequence in context: A102765 A355257 A129684 * A105147 A335262 A111924
KEYWORD
nonn,tabl
AUTHOR
Geoffrey Critzer, Nov 29 2014
STATUS
approved