login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A320316
Number of weakly unimodal compositions of n in which the greatest part occurs exactly five times.
2
1, 0, 0, 0, 0, 1, 0, 0, 0, 0, 1, 2, 3, 4, 5, 7, 9, 13, 17, 24, 32, 44, 58, 79, 103, 138, 180, 237, 307, 402, 517, 670, 859, 1104, 1407, 1799, 2280, 2896, 3656, 4616, 5801, 7291, 9120, 11407, 14215, 17701, 21971, 27252, 33699, 41637, 51314, 63170, 77590, 95202
OFFSET
0,12
FORMULA
G.f.: Sum_{n>=0} x^(5*n) / Product_{j=1..n-1} (1-x^j)^2.
a(n) ~ Pi^4 * exp(2*Pi*sqrt(n/3)) / (16 * 3^(7/4) * n^(13/4)). - Vaclav Kotesovec, Oct 24 2018
MAPLE
b:= proc(n, i) option remember; `if`(i>n, 0,
`if`(5*i=n, 1, 0)+add(b(n-i*j, i+1)*(j+1), j=0..n/i))
end:
a:= n-> `if`(n=0, 1, b(n, 1)):
seq(a(n), n=0..70);
MATHEMATICA
b[n_, i_] := b[n, i] = If[i > n, 0, If[5 i == n, 1, 0] +
Sum[b[n - i j, i + 1] (j + 1), {j, 0, n/i}]];
a[n_] := If[n == 0, 1, b[n, 1]];
a /@ Range[0, 70] (* Jean-François Alcover, Apr 22 2021, after Alois P. Heinz *)
CROSSREFS
Column k=5 of A247255.
Sequence in context: A055167 A064628 A188674 * A236166 A017834 A286225
KEYWORD
nonn
AUTHOR
Alois P. Heinz, Oct 10 2018
STATUS
approved