login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

Number of weakly unimodal compositions of n in which the greatest part occurs exactly five times.
2

%I #10 Apr 22 2021 08:44:49

%S 1,0,0,0,0,1,0,0,0,0,1,2,3,4,5,7,9,13,17,24,32,44,58,79,103,138,180,

%T 237,307,402,517,670,859,1104,1407,1799,2280,2896,3656,4616,5801,7291,

%U 9120,11407,14215,17701,21971,27252,33699,41637,51314,63170,77590,95202

%N Number of weakly unimodal compositions of n in which the greatest part occurs exactly five times.

%H Alois P. Heinz, <a href="/A320316/b320316.txt">Table of n, a(n) for n = 0..10000</a>

%H Wikipedia, <a href="https://en.wikipedia.org/wiki/Unimodality#Unimodal_function">Unimodality, Unimodal function</a>

%F G.f.: Sum_{n>=0} x^(5*n) / Product_{j=1..n-1} (1-x^j)^2.

%F a(n) ~ Pi^4 * exp(2*Pi*sqrt(n/3)) / (16 * 3^(7/4) * n^(13/4)). - _Vaclav Kotesovec_, Oct 24 2018

%p b:= proc(n, i) option remember; `if`(i>n, 0,

%p `if`(5*i=n, 1, 0)+add(b(n-i*j, i+1)*(j+1), j=0..n/i))

%p end:

%p a:= n-> `if`(n=0, 1, b(n, 1)):

%p seq(a(n), n=0..70);

%t b[n_, i_] := b[n, i] = If[i > n, 0, If[5 i == n, 1, 0] +

%t Sum[b[n - i j, i + 1] (j + 1), {j, 0, n/i}]];

%t a[n_] := If[n == 0, 1, b[n, 1]];

%t a /@ Range[0, 70] (* _Jean-François Alcover_, Apr 22 2021, after _Alois P. Heinz_ *)

%Y Column k=5 of A247255.

%K nonn

%O 0,12

%A _Alois P. Heinz_, Oct 10 2018