The OEIS is supported by the many generous donors to the OEIS Foundation.

 Hints (Greetings from The On-Line Encyclopedia of Integer Sequences!)
 A102765 Array read by antidiagonals: T(n, k) = ((n+4)^k-(n-1)^k)/5. 0
 0, 0, 1, 0, 1, 3, 0, 1, 5, 13, 0, 1, 7, 25, 51, 0, 1, 9, 43, 125, 205, 0, 1, 11, 67, 259, 625, 819, 0, 1, 13, 97, 477, 1555, 3125, 3277, 0, 1, 15, 133, 803, 3355, 9331, 15625, 13107, 0, 1, 17, 175, 1261, 6505, 23517, 55987, 78125, 52429, 0, 1, 19, 223, 1875, 11605 (list; table; graph; refs; listen; history; text; internal format)
 OFFSET 0,6 COMMENTS Consider a 5x5 matrix M = [n, 1, 1, 1, 1] [1, n, 1, 1, 1] [1, 1, n, 1, 1] [1, 1, 1, n, 1] [1, 1, 1, 1, n]. The n-th row of the array contains the values of the non diagonal elements of M^k, k=0,1,.... (Corresponding diagonal entry = non diagonal entry + (n-1)^k.) For row r we have polynomial ((r+4)^n-(r-1)^n)/5. Corresponding g.f.s: x/((1-(r-1)x)(1-(r+4)x)) If r(n) denotes a row sequence, r(n+1)/r(n) converges to n+4. Triangle T(n, k) = (4^(n-k-1)-(-1)^(n-k-1))/5*(binomial(k+(n-k-1),n-k-1)) gives coefficients for polynomials for the columns of the array. First four polynomial are:   1   3 + 2*k   13 + 9*k + 3*k^2   51 + 52*k + 18*k^2 + 4*k^3   ... LINKS EXAMPLE Array begins:   0, 1,  3, 13,  51,  205, ...   0, 1,  5, 25, 125,  625, ...   0, 1,  7, 43, 259, 1555, ...   0, 1,  9, 67, 477, 3355, ...   0, 1, 11, 97, 803, 6505, ...   ... PROG (PARI) MM(n, N)=local(M); M=matrix(n, n); for(i=1, n, for(j=1, n, if(i==j, M[i, j]=N, M[i, j]=1))); M for(k=0, 10, for(i=0, 10, print1((MM(5, k)^i)[1, 2], ", ")); print()) (PARI) p(n, k)=((n+4)^k-(n-1)^k)/5 for(k=0, 10, for(i=0, 10, print1(p(k, i), ", ")); print()) (PARI) for(k=0, 10, for(i=0, 10, print1(polcoeff(x/((1-(k-1)*x)*(1-(k+4)*x)), i), ", ")); print()) CROSSREFS Cf. A015521 (for n=0), A000351 (for n=1), A003464 (for n=2), A016130 (for n=3), A016140 (for n=4), A016153 (for n=5), A016164 (for n=6), A016174 (for n=7), A016184 (for n=8), A015441 (for n=-1), A091005 (for n=-2). Sequence in context: A046778 A119925 A210663 * A129684 A247255 A105147 Adjacent sequences:  A102762 A102763 A102764 * A102766 A102767 A102768 KEYWORD nonn,tabl AUTHOR Lambert Klasen (lambert.klasen(AT)gmx.net) and Gary W. Adamson, Feb 10 2005 STATUS approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recents
The OEIS Community | Maintained by The OEIS Foundation Inc.

Last modified May 17 23:07 EDT 2022. Contains 353779 sequences. (Running on oeis4.)