OFFSET
1,1
COMMENTS
Alternatively: Primes arising in A259973.
LINKS
K. D. Bajpai, Table of n, a(n) for n = 1..10000
EXAMPLE
a(5) = 79; divisors(8) = {1,2,4,8}; sum = 1+2+4+8 = 15; product = 1*2*4*8 = 64; 15 + 64 = 79 which is prime.
a(8) = 769; divisors(27) = {1,3,9,27}; sum = 1+3+9+27 = 40; product = 1*3*9*27 = 729; 40+729 = 769 which is prime.
MAPLE
MATHEMATICA
Select[Table[DivisorSigma[1, n] + Times @@ Divisors[n], {n, 1, 1000}], PrimeQ]
PROG
(PARI) for(n=1, 1000, d=divisors(n); k=sigma(n) + prod(i=1, #d, d[i]); if( isprime(k) , print1(k, ", ")));
(PARI) A007955(n)=if(issquare(n, &n), n^numdiv(n^2), n^(numdiv(n)/2))
list(lim)=v=List([2]); forprime(p=2, (lim-1)\2, if(isprime(2*p+1), listput(v, 2*p+1))); forprime(p=2, sqrtnint(lim\1, 3), my(t=p^3+p^2+p+1); if(t>lim, break); if(isprime(t), listput(v, t))); forcomposite(n=4, sqrtint(lim\1), my(t=A007955(n)+sigma(n)); if(t<=lim && isprime(t), listput(v, t))); Set(v) \\ Charles R Greathouse IV, Jul 17 2015
(Magma) [k: n in[1..1000] | IsPrime(k) where k is (&*Divisors(n) + SumOfDivisors(n))]
CROSSREFS
KEYWORD
nonn
AUTHOR
K. D. Bajpai, Jul 16 2015
STATUS
approved