login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A260109
Expansion of f(x^3) * f(-x^3)^2 * psi(x)^2 / psi(-x) in powers of x where psi(), f() are Ramanujan theta functions.
3
1, 3, 4, 6, 9, 12, 14, 12, 16, 18, 18, 24, 21, 27, 28, 30, 36, 24, 38, 42, 40, 42, 36, 48, 43, 48, 52, 48, 54, 60, 62, 54, 56, 66, 72, 72, 74, 63, 72, 78, 81, 84, 64, 84, 88, 84, 90, 72, 98, 108, 100, 102, 72, 108, 110, 114, 112, 96, 126, 96, 133, 120, 104
OFFSET
0,2
COMMENTS
Ramanujan theta functions: f(q) (see A121373), phi(q) (A000122), psi(q) (A010054), chi(q) (A000700).
LINKS
FORMULA
Expansion of psi(-x^3) * phi(-x^6)^2 * psi(x)^2 / psi(-x) in powers of x where phi(), psi() are Ramanujan theta functions.
Expansion of phi(x) * f(x, x^5) * f(x^2, x^4)^2 in powers of x. - Michael Somos, Jul 18 2015
Expansion of q^(-1/2) * eta(q^2)^5 * eta(q^3) * eta(q^6)^3 / (eta(q)^3 * eta(q^4) * eta(q^12)) in powers of q.
Euler transform of period 12 sequence [ 3, -2, 2, -1, 3, -6, 3, -1, 2, -2, 3, -4, ...].
a(n) = A124815(2*n + 1). a(3*n + 1) = 3 * a(n).
EXAMPLE
G.f. = 1 + 3*x + 4*x^2 + 6*x^3 + 9*x^4 + 12*x^5 + 14*x^6 + 12*x^7 + ...
G.f. = q + 3*q^3 + 4*q^5 + 6*q^7 + 9*q^9 + 12*q^11 + 14*q^13 + 12*q^15 + ...
MATHEMATICA
a[ n_] := SeriesCoefficient[ 1/4 x^(-1/2) EllipticTheta[ 2, 0, x^(1/2)]^2 EllipticTheta[ 2, Pi/4, x^(3/2)] EllipticTheta[ 4, 0, x^6]^2 / EllipticTheta[ 2, Pi/4, x^(1/2)], {x, 0, n}];
a[ n_] := SeriesCoefficient[ 2^(-3/2) x^(-1/8) QPochhammer[ -x^3] QPochhammer[ x^3]^2 EllipticTheta[ 2, 0, x^(1/2)]^2 / EllipticTheta[ 2, Pi/4, x^(1/2)], {x, 0, n}];
PROG
(PARI) {a(n) = my(A); if( n<0, 0, A = x * O(x^n); polcoeff( eta(x^2 + A)^5 * eta(x^3 + A) * eta(x^6 + A)^3 / (eta(x + A)^3 * eta(x^4 + A) * eta(x^12 + A)), n))};
CROSSREFS
Cf. A124815.
Sequence in context: A010430 A191287 A353983 * A283777 A202171 A182531
KEYWORD
nonn
AUTHOR
Michael Somos, Jul 16 2015
STATUS
approved