login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A104408
Coefficients of the A-Rogers-Selberg identity.
3
1, 0, 1, -1, 1, -1, 2, -2, 3, -3, 4, -5, 6, -6, 8, -9, 11, -12, 15, -17, 20, -22, 26, -30, 35, -38, 45, -51, 58, -64, 74, -83, 95, -105, 119, -134, 151, -166, 188, -210, 235, -259, 291, -323, 360, -396, 441, -489, 543, -595, 661, -730, 805, -883, 976, -1073, 1182, -1293, 1423, -1562, 1714
OFFSET
0,7
LINKS
Seiichi Manyama, Table of n, a(n) for n = 0..10000 (terms 0..1000 from Alois P. Heinz)
J. Mc Laughlin, A. V. Sills and P. Zimmer, Rogers-Ramanujan-Slater Type Identities, Electronic J. Combinatorics, DS15, 1-59, May 31, 2008. See "2.7 The Rogers-Selberg Mod 7 Identities".
Eric Weisstein's World of Mathematics, Rogers-Selberg Identities
FORMULA
Expansion of f(-q^3, -q^4) / f(-q^2) in powers of q where f() is Ramanujan's theta function.
Euler transform of period 14 sequence [ 0, 1, -1, 0, 0, 1, -1, 1, 0, 0, -1, 1, 0, 0, ...]. - Michael Somos, Dec 04 2007
a(n) ~ (-1)^n * cos(3*Pi/14) * 11^(1/4) * exp(Pi*sqrt(11*n/42)) / (3^(1/4) * 14^(3/4) * n^(3/4)). - Vaclav Kotesovec, Oct 04 2015
EXAMPLE
1 + q^2 - q^3 + q^4 - q^5 + 2*q^6 - 2*q^7 + 3*q^8 - 3*q^9 + 4*q^10 + ...
MATHEMATICA
nmax=60; CoefficientList[Series[Product[(1-x^(7*k-3))*(1-x^(7*k-4))*(1-x^(7*k))/(1-x^(2*k)), {k, 1, nmax}], {x, 0, nmax}], x] (* Vaclav Kotesovec, Oct 04 2015 *)
PROG
(PARI) {a(n) = if( n<0, 0, polcoeff( prod(k=1, n, (1 - x^k + x*O(x^n))^[0, 0, -1, 1, 0, 0, -1, 1, -1, 0, 0, 1, -1, 0][k%14+1]), n))} /* Michael Somos, Dec 04 2007 */
CROSSREFS
Sequence in context: A337766 A029071 A117144 * A008718 A248958 A030719
KEYWORD
sign
AUTHOR
Eric W. Weisstein, Mar 05 2005
STATUS
approved