login
The OEIS is supported by the many generous donors to the OEIS Foundation.

 

Logo

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 60th year, we have over 367,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

Other ways to Give
Hints
(Greetings from The On-Line Encyclopedia of Integer Sequences!)
A104409 Coefficients of the B-Rogers-Selberg identity. 3
1, 0, 0, 0, 1, -1, 1, -1, 2, -2, 2, -2, 4, -4, 4, -5, 7, -7, 8, -9, 12, -13, 14, -16, 21, -22, 24, -28, 34, -37, 41, -46, 55, -60, 66, -74, 87, -95, 104, -117, 135, -147, 162, -180, 205, -225, 246, -273, 309, -337, 369, -408, 457, -499, 546, -601, 669, -730, 796, -874, 969, -1055, 1149, -1259 (list; graph; refs; listen; history; text; internal format)
OFFSET
0,9
LINKS
Seiichi Manyama, Table of n, a(n) for n = 0..10000 (terms 0..1000 from G. C. Greubel)
J. Mc Laughlin, A. V. Sills and P. Zimmer, Rogers-Ramanujan-Slater Type Identities, Electronic J. Combinatorics, DS15, 1-59, May 31, 2008. See "2.7 The Rogers-Selberg Mod 7 Identities".
Eric Weisstein's World of Mathematics, Rogers-Selberg Identities
FORMULA
Expansion of f(-q^2, -q^5) / f(-q^2) in powers of q where f() is Ramanujan's theta function.
Euler transform of period 14 sequence [ 0, 0, 0, 1, -1, 1, -1, 1, -1, 1, 0, 0, 0, 0, ...]. - Michael Somos, Dec 04 2007
a(n) ~ (-1)^n * sin(Pi/7) * 11^(1/4) * exp(Pi*sqrt(11*n/42)) / (3^(1/4) * 14^(3/4) * n^(3/4)). - Vaclav Kotesovec, Oct 04 2015
EXAMPLE
1 + q^4 - q^5 + q^6 - q^7 + 2*q^8 - 2*q^9 + 2*q^10 + ...
MATHEMATICA
nmax=60; CoefficientList[Series[Product[(1-x^(7*k-2))*(1-x^(7*k-5))*(1-x^(7*k))/(1-x^(2*k)), {k, 1, nmax}], {x, 0, nmax}], x] (* Vaclav Kotesovec, Oct 04 2015 *)
PROG
(PARI) {a(n) = if( n<0, 0, polcoeff( prod(k=1, n, (1 - x^k + x*O(x^n))^[0, 0, 0, 0, -1, 1, -1, 1, -1, 1, -1, 0, 0, 0][k%14+1]), n))} /* Michael Somos, Dec 04 2007 */
CROSSREFS
Sequence in context: A200675 A029079 A035398 * A274144 A214628 A355806
KEYWORD
sign
AUTHOR
Eric W. Weisstein, Mar 06 2005
STATUS
approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recents
The OEIS Community | Maintained by The OEIS Foundation Inc.

License Agreements, Terms of Use, Privacy Policy. .

Last modified December 5 00:23 EST 2023. Contains 367565 sequences. (Running on oeis4.)