OFFSET
0,6
COMMENTS
Let T* be the infinite tree with root 0 generated by these rules: if p is in T*, then p+1 is in T* and x*p is in T*. Let g(n) be the set of nodes in the n-th generation, so that g(0) = {0}, g(1) = {1}, g(2) = {2,x}, g(3) = {3,2x,x+1,x^2}, etc. Let T(r) be the tree obtained by substituting r for x.
See A274142 for a guide to related sequences.
LINKS
Kenny Lau, Table of n, a(n) for n = 0..11916
EXAMPLE
For r = 1/4, we have g(3) = {3,2r,r+1, r^2}, in which only 3 is an integer, so that a(3) = 1.
MATHEMATICA
z = 18; t = Join[{{0}}, Expand[NestList[DeleteDuplicates[Flatten[Map[{# + 1, x*#} &, #], 1]] &, {1}, z]]];
u = Table[t[[k]] /. x -> 1/4, {k, 1, z}];
Table[Count[Map[IntegerQ, u[[k]]], True], {k, 1, z}]
CROSSREFS
KEYWORD
nonn,easy
AUTHOR
Clark Kimberling, Jun 11 2016
EXTENSIONS
More terms from Kenny Lau, Jul 01 2016
STATUS
approved