The OEIS is supported by the many generous donors to the OEIS Foundation. Hints (Greetings from The On-Line Encyclopedia of Integer Sequences!)
 A135799 Second column (k=1) of triangle A134832 (circular succession numbers). 3
 1, 0, 0, 4, 5, 48, 252, 1832, 14625, 132080, 1323168, 14576076, 175108661, 2278429216, 31920719820, 479088848976, 7669098865441, 130426934203296, 2348478878321248, 44633950190867220, 892899715052136645 (list; graph; refs; listen; history; text; internal format)
 OFFSET 0,4 COMMENTS a(n) enumerates circular permutations of {1,2,...,n+1} with exactly one successor pair (i,i+1). Due to cyclicity also (n+1,1) is a successor pair. The o.g.f. of this sequence seems to be the product of the o.g.f. for A000166 (derangements) by the fraction (1+2*x)/(1+x)^2 = 1 - x^2+ 2*x^3 - 3*x^4 + ... = 1 + sum( (-1)^i i x^(i+1), i=0..infinity) - Thomas Baruchel, Jan 08 2016 This correspond to the following transform: a(n) = b(n) - sum((-1)^(n + i) (n - i - 1)*b(i), (i=0..n-2)) - Olivier Gérard, Mar 05 2016 REFERENCES Ch. A. Charalambides, Enumerative Combinatorics, Chapman & Hall/CRC, Boca Raton, Florida, 2002, p. 183, eq. (5.15), for k=1. LINKS G. C. Greubel, Table of n, a(n) for n = 0..448 Bhadrachalam Chitturi and Krishnaveni K S, Adjacencies in Permutations, arXiv preprint arXiv:1601.04469 [cs.DM], 2016. FORMULA a(n) = (n+1)*A000757(n), n>=0. E.g.f.: (d/dx) x*(1-log(1-x))/e^x. O.g.f.: see comment section. EXAMPLE a(3)=4 because the 4!/4 = 6 circular permutations of n=4 elements (1,2,3,4), (1,4, 3,2), (1,3,4,2),(1,2,4,3), (1,4,2,3) and (1,3,2,4) have 4,0,1,1, 1 and 1 successor pair(s), respectively. MATHEMATICA f[n_] := (-1)^n + Sum[(-1)^k*n!/((n - k)*k!), {k, 0, n - 1}]; a[n_, n_] = 1; a[n_, 0] := f[n]; a[n_, k_] := a[n, k] = n/k*a[n - 1, k - 1]; Table[a[n, 1], {n, 21}] (* Michael De Vlieger, Jan 09 2016, after Jean-François Alcover at A134832 *) CROSSREFS Cf. A000757 (k=0 column), A134515 (k=2 column). Sequence in context: A239860 A151486 A042383 * A226648 A335797 A041941 Adjacent sequences: A135796 A135797 A135798 * A135800 A135801 A135802 KEYWORD nonn,easy AUTHOR Wolfdieter Lang, Jan 21 2008, Feb 22 2008 STATUS approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recents
The OEIS Community | Maintained by The OEIS Foundation Inc.

Last modified March 27 12:09 EDT 2023. Contains 361570 sequences. (Running on oeis4.)