login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A141907
a(n) = Sum_{k=0..n-1} (Sum_{j=0..k+1} (-1)^j*binomial(n + 1, j)*(k + 1 - j)^n) mod 10 * 10^k.
0
1, 11, 141, 1111, 16661, 172271, 1016101, 17399371, 128404821, 1302442031, 16784848761, 131546645131, 1860584850681, 19465322356491, 129218121812921, 1955997557995591, 14000280008200041, 154002080080200451
OFFSET
1,2
COMMENTS
A palindromic number sequence based on the Eulerian numbers modulo ten and base ten.
LINKS
Eric Weisstein's World of Mathematics, Palindromic Number.
FORMULA
a(n)=Sum[Mod[Sum[(-1)^j Binomial[n + 1, j](k + 1 - j)^n, {j, 0, k + 1}], 10]*10^k, {k, 0, n - 1}].
MATHEMATICA
Table[Sum[Mod[Sum[(-1)^j Binomial[n + 1, j](k + 1 - j)^n, {j, 0, k + 1}], 10]*10^k, {k, 0, n - 1}], {n, 1, 30}]
CROSSREFS
Sequence in context: A024142 A024296 A324084 * A205084 A083078 A048965
KEYWORD
nonn,base
AUTHOR
EXTENSIONS
Edited by Michel Marcus, Jan 30 2013
STATUS
approved