login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

a(n) = Sum_{k=0..n-1} (Sum_{j=0..k+1} (-1)^j*binomial(n + 1, j)*(k + 1 - j)^n) mod 10 * 10^k.
0

%I #15 Feb 17 2024 23:44:25

%S 1,11,141,1111,16661,172271,1016101,17399371,128404821,1302442031,

%T 16784848761,131546645131,1860584850681,19465322356491,

%U 129218121812921,1955997557995591,14000280008200041,154002080080200451

%N a(n) = Sum_{k=0..n-1} (Sum_{j=0..k+1} (-1)^j*binomial(n + 1, j)*(k + 1 - j)^n) mod 10 * 10^k.

%C A palindromic number sequence based on the Eulerian numbers modulo ten and base ten.

%H Eric Weisstein's World of Mathematics, <a href="https://mathworld.wolfram.com/PalindromicNumber.html">Palindromic Number</a>.

%F a(n)=Sum[Mod[Sum[(-1)^j Binomial[n + 1, j](k + 1 - j)^n, {j, 0, k + 1}], 10]*10^k, {k, 0, n - 1}].

%t Table[Sum[Mod[Sum[(-1)^j Binomial[n + 1, j](k + 1 - j)^n, {j, 0, k + 1}], 10]*10^k, {k, 0, n - 1}], {n, 1, 30}]

%K nonn,base

%O 1,2

%A _Roger L. Bagula_ and _Gary W. Adamson_, Sep 14 2008

%E Edited by _Michel Marcus_, Jan 30 2013