login
A306437
Regular triangle read by rows where T(n,k) is the number of non-crossing set partitions of {1, ..., n} in which all blocks have size k.
3
1, 1, 1, 1, 0, 1, 1, 2, 0, 1, 1, 0, 0, 0, 1, 1, 5, 3, 0, 0, 1, 1, 0, 0, 0, 0, 0, 1, 1, 14, 0, 4, 0, 0, 0, 1, 1, 0, 12, 0, 0, 0, 0, 0, 1, 1, 42, 0, 0, 5, 0, 0, 0, 0, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 1, 132, 55, 22, 0, 6, 0, 0, 0, 0, 0, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 1, 429, 0, 0, 0, 0, 7, 0, 0, 0, 0, 0, 0, 1
OFFSET
1,8
LINKS
Germain Kreweras, Sur les partitions non croisées d'un cycle, Discrete Math. 1 333-350 (1972).
FORMULA
If d|n, then T(n, d) = binomial(n, n/d)/(n - n/d + 1); otherwise T(n, k) = 0 [Theorem 1 of Kreweras].
EXAMPLE
Triangle begins:
1
1 1
1 0 1
1 2 0 1
1 0 0 0 1
1 5 3 0 0 1
1 0 0 0 0 0 1
1 14 0 4 0 0 0 1
1 0 12 0 0 0 0 0 1
1 42 0 0 5 0 0 0 0 1
1 0 0 0 0 0 0 0 0 0 1
1 132 55 22 0 6 0 0 0 0 0 1
Row 6 counts the following non-crossing set partitions (empty columns not shown):
{{1}{2}{3}{4}{5}{6}} {{12}{34}{56}} {{123}{456}} {{123456}}
{{12}{36}{45}} {{126}{345}}
{{14}{23}{56}} {{156}{234}}
{{16}{23}{45}}
{{16}{25}{34}}
MAPLE
T:= (n, k)-> `if`(irem(n, k)=0, binomial(n, n/k)/(n-n/k+1), 0):
seq(seq(T(n, k), k=1..n), n=1..14); # Alois P. Heinz, Feb 16 2019
MATHEMATICA
Table[Table[If[Divisible[n, d], d/n*Binomial[n, n/d-1], 0], {d, n}], {n, 15}]
CROSSREFS
Row sums are A194560. Column k=2 is A126120. Trisection of column k=3 is A001764.
Sequence in context: A147861 A167271 A156348 * A343746 A227990 A101614
KEYWORD
nonn,tabl
AUTHOR
Gus Wiseman, Feb 15 2019
STATUS
approved