login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A306437
Regular triangle read by rows where T(n,k) is the number of non-crossing set partitions of {1, ..., n} in which all blocks have size k.
3
1, 1, 1, 1, 0, 1, 1, 2, 0, 1, 1, 0, 0, 0, 1, 1, 5, 3, 0, 0, 1, 1, 0, 0, 0, 0, 0, 1, 1, 14, 0, 4, 0, 0, 0, 1, 1, 0, 12, 0, 0, 0, 0, 0, 1, 1, 42, 0, 0, 5, 0, 0, 0, 0, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 1, 132, 55, 22, 0, 6, 0, 0, 0, 0, 0, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 1, 429, 0, 0, 0, 0, 7, 0, 0, 0, 0, 0, 0, 1
OFFSET
1,8
LINKS
Germain Kreweras, Sur les partitions non croisées d'un cycle, Discrete Math. 1 333-350 (1972).
FORMULA
If d|n, then T(n, d) = binomial(n, n/d)/(n - n/d + 1); otherwise T(n, k) = 0 [Theorem 1 of Kreweras].
EXAMPLE
Triangle begins:
1
1 1
1 0 1
1 2 0 1
1 0 0 0 1
1 5 3 0 0 1
1 0 0 0 0 0 1
1 14 0 4 0 0 0 1
1 0 12 0 0 0 0 0 1
1 42 0 0 5 0 0 0 0 1
1 0 0 0 0 0 0 0 0 0 1
1 132 55 22 0 6 0 0 0 0 0 1
Row 6 counts the following non-crossing set partitions (empty columns not shown):
{{1}{2}{3}{4}{5}{6}} {{12}{34}{56}} {{123}{456}} {{123456}}
{{12}{36}{45}} {{126}{345}}
{{14}{23}{56}} {{156}{234}}
{{16}{23}{45}}
{{16}{25}{34}}
MAPLE
T:= (n, k)-> `if`(irem(n, k)=0, binomial(n, n/k)/(n-n/k+1), 0):
seq(seq(T(n, k), k=1..n), n=1..14); # Alois P. Heinz, Feb 16 2019
MATHEMATICA
Table[Table[If[Divisible[n, d], d/n*Binomial[n, n/d-1], 0], {d, n}], {n, 15}]
CROSSREFS
Row sums are A194560. Column k=2 is A126120. Trisection of column k=3 is A001764.
Sequence in context: A147861 A167271 A156348 * A343746 A227990 A101614
KEYWORD
nonn,tabl
AUTHOR
Gus Wiseman, Feb 15 2019
STATUS
approved