OFFSET
0,3
COMMENTS
With a different offset, number of partitions of n in which the greatest part is 12.
Also number of partitions of n into parts <= 12: a(n)=A026820(n,12). [Reinhard Zumkeller, Jan 21 2010]
REFERENCES
A. Cayley, Collected Mathematical Papers. Vols. 1-13, Cambridge Univ. Press, London, 1889-1897, Vol. 10, p. 415.
H. Gupta et al., Tables of Partitions. Royal Society Mathematical Tables, Vol. 4, Cambridge Univ. Press, 1958, p. 2.
LINKS
T. D. Noe, Table of n, a(n) for n = 0..1000
INRIA Algorithms Project, Encyclopedia of Combinatorial Structures 361
Index entries for linear recurrences with constant coefficients, signature (1, 1, 0, 0, -1, 0, -1, 0, 0, 0, 0, 1, -1, 0, 2, 1, 1, 0, 0, -1, -1, -2, -1, -1, 0, -2, 0, 1, 2, 2, 2, 2, 1, 1, 0, -1, -2, -1, -4, -1, -2, -1, 0, 1, 1, 2, 2, 2, 2, 1, 0, -2, 0, -1, -1, -2, -1, -1, 0, 0, 1, 1, 2, 0, -1, 1, 0, 0, 0, 0, -1, 0, -1, 0, 0, 1, 1, -1).
FORMULA
G.f.: 1/Product_{k=1..12}(1-x^k).
a(n) = a(n-1) + a(n-2) - a(n-5) - a(n-7) + a(n-12) - a(n-13) + 2*a(n-15) + a(n-16) + a(n-17) - a(n-20) - a(n-21) - 2*a(n-22) - a(n-23) - a(n-24) - 2*a(n-26) + a(n-28) + 2*a(n-29) + 2*a(n-30) + 2*a(n-31) + 2*a(n-32) + a(n-33) + a(n-34) - a(n-36) - 2*a(n-37) - a(n-38) - 4*a(n-39) - a(n-40) - 2*a(n-41) - a(n-42) + a(n-44) + a(n-45) + 2*a(n-46) + 2a(n-47) + 2*a(n-48) + 2*a(n-49) + a(n-50) - 2*a(n-52) - a(n-54) - a(n-55) - 2*a(n-56) - a(n-57) - a(n-58) + a(n-61) + a(n-62) + 2*a(n-63) - a(n-65) + a(n-66) - a(n-71) - a(n-73) + a(n-76) + a(n-77) - a(n-78). - David Neil McGrath, Jul 28 2015
MAPLE
1/(1-x)/(1-x^2)/(1-x^3)/(1-x^4)/(1-x^5)/(1-x^6)/(1-x^7)/(1-x^8)/(1-x^9)/(1-x^10)/(1-x^11)/(1-x^12)
with(combstruct):ZL13:=[S, {S=Set(Cycle(Z, card<13))}, unlabeled]:seq(count(ZL13, size=n), n=0..46); # Zerinvary Lajos, Sep 24 2007
B:=[S, {S = Set(Sequence(Z, 1 <= card), card <=12)}, unlabelled]: seq(combstruct[count](B, size=n), n=0..46); # Zerinvary Lajos, Mar 21 2009
MATHEMATICA
CoefficientList[ Series[ 1/ Product[ 1 - x^n, {n, 1, 12} ], {x, 0, 60} ], x ]
Table[ Length[ Select[ Partitions[n], First[ # ] == 12 & ]], {n, 1, 60} ]
CROSSREFS
KEYWORD
nonn,easy
AUTHOR
EXTENSIONS
More terms from Robert G. Wilson v, Dec 11 2000
STATUS
approved