login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A008641
Number of partitions of n into at most 12 parts.
3
1, 1, 2, 3, 5, 7, 11, 15, 22, 30, 42, 56, 77, 100, 133, 172, 224, 285, 366, 460, 582, 725, 905, 1116, 1380, 1686, 2063, 2503, 3036, 3655, 4401, 5262, 6290, 7476, 8877, 10489, 12384, 14552, 17084, 19978, 23334, 27156, 31570, 36578, 42333, 48849, 56297
OFFSET
0,3
COMMENTS
With a different offset, number of partitions of n in which the greatest part is 12.
Also number of partitions of n into parts <= 12: a(n)=A026820(n,12). [Reinhard Zumkeller, Jan 21 2010]
REFERENCES
A. Cayley, Collected Mathematical Papers. Vols. 1-13, Cambridge Univ. Press, London, 1889-1897, Vol. 10, p. 415.
H. Gupta et al., Tables of Partitions. Royal Society Mathematical Tables, Vol. 4, Cambridge Univ. Press, 1958, p. 2.
LINKS
Index entries for linear recurrences with constant coefficients, signature (1, 1, 0, 0, -1, 0, -1, 0, 0, 0, 0, 1, -1, 0, 2, 1, 1, 0, 0, -1, -1, -2, -1, -1, 0, -2, 0, 1, 2, 2, 2, 2, 1, 1, 0, -1, -2, -1, -4, -1, -2, -1, 0, 1, 1, 2, 2, 2, 2, 1, 0, -2, 0, -1, -1, -2, -1, -1, 0, 0, 1, 1, 2, 0, -1, 1, 0, 0, 0, 0, -1, 0, -1, 0, 0, 1, 1, -1).
FORMULA
G.f.: 1/Product_{k=1..12}(1-x^k).
a(n) = a(n-1) + a(n-2) - a(n-5) - a(n-7) + a(n-12) - a(n-13) + 2*a(n-15) + a(n-16) + a(n-17) - a(n-20) - a(n-21) - 2*a(n-22) - a(n-23) - a(n-24) - 2*a(n-26) + a(n-28) + 2*a(n-29) + 2*a(n-30) + 2*a(n-31) + 2*a(n-32) + a(n-33) + a(n-34) - a(n-36) - 2*a(n-37) - a(n-38) - 4*a(n-39) - a(n-40) - 2*a(n-41) - a(n-42) + a(n-44) + a(n-45) + 2*a(n-46) + 2a(n-47) + 2*a(n-48) + 2*a(n-49) + a(n-50) - 2*a(n-52) - a(n-54) - a(n-55) - 2*a(n-56) - a(n-57) - a(n-58) + a(n-61) + a(n-62) + 2*a(n-63) - a(n-65) + a(n-66) - a(n-71) - a(n-73) + a(n-76) + a(n-77) - a(n-78). - David Neil McGrath, Jul 28 2015
MAPLE
1/(1-x)/(1-x^2)/(1-x^3)/(1-x^4)/(1-x^5)/(1-x^6)/(1-x^7)/(1-x^8)/(1-x^9)/(1-x^10)/(1-x^11)/(1-x^12)
with(combstruct):ZL13:=[S, {S=Set(Cycle(Z, card<13))}, unlabeled]:seq(count(ZL13, size=n), n=0..46); # Zerinvary Lajos, Sep 24 2007
B:=[S, {S = Set(Sequence(Z, 1 <= card), card <=12)}, unlabelled]: seq(combstruct[count](B, size=n), n=0..46); # Zerinvary Lajos, Mar 21 2009
MATHEMATICA
CoefficientList[ Series[ 1/ Product[ 1 - x^n, {n, 1, 12} ], {x, 0, 60} ], x ]
Table[ Length[ Select[ Partitions[n], First[ # ] == 12 & ]], {n, 1, 60} ]
CROSSREFS
a(n) = A008284(n+12, 12), n >= 0.
Sequence in context: A242697 A218512 A008635 * A341714 A332746 A242698
KEYWORD
nonn,easy
EXTENSIONS
More terms from Robert G. Wilson v, Dec 11 2000
STATUS
approved