OFFSET
1,1
FORMULA
From Amiram Eldar, Jul 30 2023: (Start)
Equals exp(Sum_{k>=1} 2^(2*k-1)*(2^(2*k)-1)*B(2*k)*zeta(2*k)/(k*(2*k)!)), where B(k) is the k-th Bernoulli number.
Equals exp(Sum_{k>=1} (-1)^(k+1)*(2^(2*k)-1)*zeta(2*k)^2/(k*Pi^(2*k))). (End)
EXAMPLE
2.116465536505484775878572227025831988148089392809082568281348...
MAPLE
evalf(exp(sum(log(cosh(1/n)), n=1..infinity)), 100)
PROG
(PARI) default(realprecision, 120); exp(sumpos(k=1, log(cosh(1/k))))
CROSSREFS
KEYWORD
nonn,cons
AUTHOR
Vaclav Kotesovec, Nov 03 2014
STATUS
approved