login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A249673
Decimal expansion of Product_{n>=1} cosh(1/n).
7
2, 1, 1, 6, 4, 6, 5, 5, 3, 6, 5, 0, 5, 4, 8, 4, 7, 7, 5, 8, 7, 8, 5, 7, 2, 2, 2, 7, 0, 2, 5, 8, 3, 1, 9, 8, 8, 1, 4, 8, 0, 8, 9, 3, 9, 2, 8, 0, 9, 0, 8, 2, 5, 6, 8, 2, 8, 1, 3, 4, 8, 0, 7, 8, 6, 9, 4, 2, 3, 8, 3, 0, 7, 2, 8, 9, 0, 1, 1, 7, 2, 9, 9, 6, 1, 9, 3, 4, 6, 5, 9, 2, 4, 3, 1, 0, 8, 8, 9, 4, 2, 8, 6, 3, 7
OFFSET
1,1
FORMULA
From Amiram Eldar, Jul 30 2023: (Start)
Equals exp(Sum_{k>=1} 2^(2*k-1)*(2^(2*k)-1)*B(2*k)*zeta(2*k)/(k*(2*k)!)), where B(k) is the k-th Bernoulli number.
Equals exp(Sum_{k>=1} (-1)^(k+1)*(2^(2*k)-1)*zeta(2*k)^2/(k*Pi^(2*k))). (End)
EXAMPLE
2.116465536505484775878572227025831988148089392809082568281348...
MAPLE
evalf(exp(sum(log(cosh(1/n)), n=1..infinity)), 100)
PROG
(PARI) default(realprecision, 120); exp(sumpos(k=1, log(cosh(1/k))))
KEYWORD
nonn,cons
AUTHOR
Vaclav Kotesovec, Nov 03 2014
STATUS
approved