OFFSET
0,4
COMMENTS
There is a strong relation between this triangle and triangle A048994 which deals with the binomial (x,n), this triangle being dealing with the summation of this binomial.
Apparently A054651 with reversed rows. - Mathew Englander, May 17 2014
LINKS
Seiichi Manyama, Rows n = 0..139, flattened
FORMULA
T(n,k) = T(n-1,k)+ T(n-1,k-1)- T(n-2,k-1)*(n-1)+ T(n-2,k)*(n-1)^2, T(n,n)=1, T(n,0)= n! for n >= 0.
T(n,k) = T(n-1,k)*n + (A048994(n,k)), T(n,n)= 1, T(n,0)= n! for n>= 0.
E.g.f. of column k: (log(1 + x))^k/(k! * (1 - x)). - Seiichi Manyama, Sep 26 2021
T(n, k) = Sum_{i=0..n-k} Stirling1(i+k, k)*n!/(i+k)!. - Igor Victorovich Statsenko, May 27 2024
EXAMPLE
Triangle begins:
n\k 0 1 2 3 4 5 6 7 8
0 1
1 1 1
2 2 1 1
3 6 5 0 1
4 24 14 11 -2 1
5 120 94 5 25 -5 1
6 720 444 304 -75 55 -9 1
7 5040 3828 364 1099 -350 112 -14 1
8 40320 25584 15980 -4340 3969 -1064 210 -20 1
...
MATHEMATICA
row[n_] := CoefficientList[ Series[ Sum[ Binomial[x, m], {m, 0, n}], {x, 0, n}], x]*n!; Table[row[n], {n, 0, 8}] // Flatten (* Jean-François Alcover, Jan 04 2013 *)
CROSSREFS
KEYWORD
sign,tabl
AUTHOR
Mokhtar Mohamed, Dec 29 2012
STATUS
approved