login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A348063
Coefficient of x^2 in expansion of n!* Sum_{k=0..n} binomial(x,k).
5
1, 0, 11, 5, 304, 364, 15980, 34236, 1368936, 4429656, 173699712, 771653376, 30605906304, 175622947200, 7149130156800, 50800930272000, 2137822335475200, 18241636315507200, 796397873127782400, 7971407298921830400, 361615771356450508800, 4168685961862906982400, 196587429737202833817600
OFFSET
2,3
FORMULA
a(n) = a(n-1) + (n-1)^2 * a(n-2) + (-1)^n * (n-2)!.
E.g.f.: (log(1 + x))^2/(2 * (1 - x)).
a(n) ~ n! * log(2)^2 / 2 * (1 + (-1)^n*log(n)/(log(2)^2*n)). - Vaclav Kotesovec, Sep 27 2021
PROG
(PARI) a(n) = n!*polcoef(sum(k=2, n, binomial(x, k)), 2);
(PARI) a(n) = if(n<2, 0, a(n-1)+(n-1)^2*a(n-2)+(-1)^n*(n-2)!);
(PARI) N=40; x='x+O('x^N); Vec(serlaplace(log(1+x)^2/(2*(1-x))))
(Python)
from sympy.abc import x
from sympy import ff, expand
def A348063(n): return sum(ff(n, n-k)*expand(ff(x, k)).coeff(x**2) for k in range(2, n+1)) # Chai Wah Wu, Sep 27 2021
CROSSREFS
KEYWORD
nonn
AUTHOR
Seiichi Manyama, Sep 26 2021
STATUS
approved