login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A028339
Coefficient of x^2 in expansion of (x+1)*(x+3)*...*(x+2*n-1).
6
1, 9, 86, 950, 12139, 177331, 2924172, 53809164, 1094071221, 24372200061, 590546123298, 15467069396610, 435512515705695, 13121113142970855, 421214220916438680, 14354510691610713240, 517596339235489288425, 19688993487602867898225, 787995759739909824183150
OFFSET
2,2
COMMENTS
Equals third left hand column of A161198 triangle divided by 4. - Johannes W. Meijer, Jun 08 2009
LINKS
FORMULA
a(n) = Sum_{i=k+1,..,n}[ (-1)^(k+1-i) 2^(n-1) binomial(i-1, k) s1(n, i) ] with k = 2, where s1(n, i) are unsigned Stirling numbers of the first kind. - Victor Adamchik (adamchik(AT)ux10.sp.cs.cmu.edu), Jan 23 2001
E.g.f.: (log(1-2*x))^2/(8*sqrt(1-2*x)). - Vladeta Jovovic, Feb 19 2003
a(n) ~ n! * log(n)^2 * 2^(n-3) / sqrt(Pi*n) * (1 + (2*gamma + 4*log(2))/log(n)), where gamma is the Euler-Mascheroni constant (A001620). - Vaclav Kotesovec, Oct 18 2017
EXAMPLE
G.f. = x^2 + 9*x^3 + 86*x^4 + 950*x^5 + 12139*x^6 + 177331*x^7 + ...
MATHEMATICA
Table[Coefficient[Product[x + 2*k - 1, {k, 1, n}], x, 2], {n, 2, 50}] (* G. C. Greubel, Nov 24 2016 *)
PROG
(PARI) a(n) = polcoeff(prod(k=1, n, x+2*k-1), 2); \\ Michel Marcus, Nov 12 2014
CROSSREFS
Sequence in context: A276242 A015581 A152261 * A180751 A266828 A100814
KEYWORD
nonn
AUTHOR
EXTENSIONS
More terms from Michel Marcus, Nov 12 2014
STATUS
approved