login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A152261
a(n) = ((9 + sqrt(5))^n + (9 - sqrt(5))^n)/2.
2
1, 9, 86, 864, 9016, 96624, 1054016, 11628864, 129214336, 1442064384, 16136869376, 180866755584, 2029199527936, 22779718078464, 255815761289216, 2873425129242624, 32279654468386816, 362653470608523264
OFFSET
0,2
COMMENTS
Binomial transform of A152109. - Philippe Deléham, Dec 03 2008
FORMULA
From Philippe Deléham, Dec 03 2008: (Start)
a(n) = 18*a(n-1) - 76*a(n-2), n > 1; a(0)=1, a(1)=9.
G.f.: (1-9*x)/(1-18*x+76*x^2).
a(n) = Sum_{k=0..n} A098158(n,k)*9^(2k-n)*5^(n-k). (End)
a(n) = m^n*(ChebyshevU(n, 9/m) - (9/m)*ChebyshevU(n-1, 9/m)), where m = 2*sqrt(19). - G. C. Greubel, May 23 2023
MATHEMATICA
LinearRecurrence[{18, -76}, {1, 9}, 41] (* G. C. Greubel, May 23 2023 *)
PROG
(Magma) Z<x>:= PolynomialRing(Integers()); N<r5>:=NumberField(x^2-5); S:=[ ((9+r5)^n+(9-r5)^n)/2: n in [0..17] ]; [ Integers()!S[j]: j in [1..#S] ]; // Klaus Brockhaus, Dec 03 2008
(Magma) [n le 2 select 9^(n-1) else 18*Self(n-1) -76*Self(n-2): n in [1..30]]; // G. C. Greubel, May 23 2023
(SageMath)
@CachedFunction
def a(n): # a = A152261
if (n<2): return 9^n
else: return 18*a(n-1) -76*a(n-2)
[a(n) for n in range(41)] # G. C. Greubel, May 23 2023
CROSSREFS
Cf. A152109.
Sequence in context: A204465 A276242 A015581 * A028339 A180751 A266828
KEYWORD
nonn
AUTHOR
Al Hakanson (hawkuu(AT)gmail.com), Dec 01 2008
EXTENSIONS
Extended beyond a(6) by Klaus Brockhaus, Dec 03 2008
STATUS
approved