login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A028341
Coefficient of x^4 in expansion of (x+1)*(x+3)*...*(x+2*n-1).
5
1, 25, 505, 10045, 208054, 4574934, 107494190, 2702025590, 72578259391, 2078757113719, 63324503917311, 2046225352864875, 69953125893139644, 2523698606200763196, 95853765344939263692, 3824294822931302783964, 159940198124792648875341, 6998152417792503243516261
OFFSET
4,2
COMMENTS
Equals fifth left hand column of A161198 triangle divided by 16. - Johannes W. Meijer, Jun 08 2009
LINKS
FORMULA
a(n) = Sum_{i=k+1,..,n} (-1)^(k+1-i)*2^(n-1)*binomial(i-1, k)*s1(n, i) with k = 4, where s1(n, i) are unsigned Stirling numbers of the first kind. - Victor Adamchik (adamchik(AT)ux10.sp.cs.cmu.edu), Jan 23 2001
E.g.f.: (log(1-2*x))^4/( 384*sqrt(1-2*x) ). - Vladeta Jovovic, Feb 19 2003
EXAMPLE
G.f. = x^4 + 25*x^5 + 505*x^6 + 10045*x^7 + 208054*x^8 + 4574934*x^9 + ...
MAPLE
N:= 50: # to get a(4) to a(N)
P[0]:= 1;
for n from 1 to N do
P[n]:= rem(P[n-1]*(x + 2*n-1), x^5, x)
od:
seq(coeff(P[n], x, 4), n=4..N); # Robert Israel, Nov 13 2014
MATHEMATICA
Table[Coefficient[Product[x + 2*k - 1, {k, 1, n}], x, 4], {n, 4, 50}] (* G. C. Greubel, Nov 24 2016 *)
PROG
(PARI) a(n) = polcoeff(prod(k=1, n, x+2*k-1), 4); \\ Michel Marcus, Nov 12 2014
CROSSREFS
KEYWORD
nonn
AUTHOR
EXTENSIONS
More terms from Michel Marcus, Nov 12 2014
STATUS
approved