login
The OEIS is supported by the many generous donors to the OEIS Foundation.

 

Logo
Hints
(Greetings from The On-Line Encyclopedia of Integer Sequences!)
A000497 S2(j,2j+2) where S2(n,k) is a 2-associated Stirling number of the second kind.
(Formerly M5186 N2254)
2
1, 25, 490, 9450, 190575, 4099095, 94594500, 2343240900, 62199262125, 1764494857125, 53338158823950, 1712934942468750, 58274046742786875, 2094379201311271875, 79318164037837725000, 3157886388887074845000 (list; graph; refs; listen; history; text; internal format)
OFFSET

1,2

REFERENCES

L. Comtet, Advanced Combinatorics, Reidel, 1974, p. 256.

F. N. David and D. E. Barton, Combinatorial Chance. Hafner, NY, 1962, p. 296.

N. J. A. Sloane, A Handbook of Integer Sequences, Academic Press, 1973 (includes this sequence).

N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).

LINKS

Vincenzo Librandi, Table of n, a(n) for n = 1..100

H. W. Gould, Harris Kwong, Jocelyn Quaintance, On Certain Sums of Stirling Numbers with Binomial Coefficients, J. Integer Sequences, 18 (2015), #15.9.6.

M. Ward, The representations of Stirling's numbers and Stirling's polynomials as sums of factorials, Amer. J. Math., 56 (1934), p. 87-95.

FORMULA

G.f.: x*(4*x+1)*hypergeom([3, 7/2],[],2*x)+28*x^3*hypergeom([4, 9/2],[],2*x). - Mark van Hoeij, Apr 07 2013

a(n) = n*(n+1)*(2*n+1)*2^n*GAMMA(n+3/2)/(9*sqrt(Pi)). - Vaclav Kotesovec, Aug 07 2013

(2*n-1)*(n-1)*a(n) -(n+1)*(1+2*n)^2*a(n-1)=0. - R. J. Mathar, Jun 09 2018

MAPLE

gf := (u, t)->exp(u*(exp(t)-1-t)); S2a := j->simplify(subs(u=0, t=0, diff(gf(u, t), u$j, t$(2*j+2)))/j!); for i from 1 to 20 do S2a(i); od;

# Barbara Haas Margolius (margolius(AT)math.csuohio.edu), Dec 12 2000

MATHEMATICA

t[n_, k_] := Sum[ (-1)^i*Binomial[n, i]*Sum[ (-1)^j*(k-i-j)^(n-i)/(j!*(k-i-j)!), {j, 0, k-i}], {i, 0, k}]; Table[ t[2n+2, n], {n, 1, 16} ](* Jean-François Alcover, Feb 24 2012 *)

Table[n*(n+1)*(2*n+1)*2^n*Gamma[n+3/2]/(9*Sqrt[Pi]), {n, 1, 20}] (* Vaclav Kotesovec, Aug 07 2013 *)

CROSSREFS

Cf. A008299, A000504.

Sequence in context: A059946 A357147 A118445 * A353116 A028341 A282689

Adjacent sequences: A000494 A000495 A000496 * A000498 A000499 A000500

KEYWORD

nonn,nice,easy

AUTHOR

N. J. A. Sloane

EXTENSIONS

More terms from Barbara Haas Margolius (margolius(AT)math.csuohio.edu), Dec 12 2000

STATUS

approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recents
The OEIS Community | Maintained by The OEIS Foundation Inc.

License Agreements, Terms of Use, Privacy Policy. .

Last modified March 28 05:31 EDT 2023. Contains 361577 sequences. (Running on oeis4.)