The OEIS is supported by the many generous donors to the OEIS Foundation.

 Hints (Greetings from The On-Line Encyclopedia of Integer Sequences!)
 A348062 Primes p such that the length of the (eventual) period of the sequence {2^(2^k) mod p: k >= 0} is odd. 1
 2, 3, 5, 17, 29, 43, 47, 113, 127, 179, 197, 257, 277, 283, 293, 317, 383, 439, 449, 467, 479, 509, 569, 641, 659, 719, 797, 863, 1013, 1069, 1289, 1373, 1399, 1427, 1439, 1487, 1579, 1627, 1657, 1753, 1823, 1913, 1933, 1949, 2063, 2203, 2207, 2213, 2273, 2339, 2351 (list; graph; refs; listen; history; text; internal format)
 OFFSET 1,1 COMMENTS Of these numbers only 3 and 5 are elite primes (A102742). (Aigner) Every prime of the form A036259(n)*2^m + 1, with m, n >= 1, is in this sequence. LINKS Table of n, a(n) for n=1..51. Alexander Aigner, Über Primzahlen, nach denen (fast) alle Fermatzahlen quadratische Nichtreste sind, Monatsh. Math., Vol. 101 (1986), pp. 85-93; alternative link. PROG (PARI) L=List([2]); forprime(p=3, 2351, z=znorder(Mod(2, p)); if(znorder(Mod(2, z/2^valuation(z, 2)))%2, listput(L, p))); Vec(L) CROSSREFS Supersequence of A023394. Cf. A102742 (elite primes), A256607. Sequence in context: A127062 A214735 A216061 * A349678 A029972 A077498 Adjacent sequences: A348059 A348060 A348061 * A348063 A348064 A348065 KEYWORD nonn AUTHOR Arkadiusz Wesolowski, Sep 26 2021 STATUS approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recents
The OEIS Community | Maintained by The OEIS Foundation Inc.

Last modified April 18 10:01 EDT 2024. Contains 371779 sequences. (Running on oeis4.)