The OEIS mourns the passing of Jim Simons and is grateful to the Simons Foundation for its support of research in many branches of science, including the OEIS.
The OEIS is supported by the many generous donors to the OEIS Foundation.

 Hints (Greetings from The On-Line Encyclopedia of Integer Sequences!)
 A127062 Primes p such that denominator of Sum_{k=1..p-1} 1/k^2 is a square and denominator Sum_{k=1..p-1} 1/k^3 is a cube and denominator Sum_{k=1..p-1} 1/k^4 is a fourth power. 1
 2, 3, 5, 17, 29, 31, 97, 439, 443, 449, 457, 461, 463, 1009, 1013, 24391, 24407, 24413, 24419, 24421, 24439, 24443, 24469, 24473, 24481, 117659, 117671, 117673, 117679, 117701, 117703, 117709, 117721, 117727, 117731, 117751, 117757, 117763, 117773 (list; graph; refs; listen; history; text; internal format)
 OFFSET 1,1 COMMENTS Subsequence of A127061. - Max Alekseyev, Feb 08 2007 LINKS Table of n, a(n) for n=1..39. FORMULA Intersection of A127042, A127046 and A127047. - Michel Marcus, Nov 05 2013 MATHEMATICA pdenQ[n_]:=Module[{c=Denominator[Table[Sum[1/k^i, {k, n-1}], {i, 2, 4}]]}, AllTrue[{ Surd[c[[1]], 2], Surd[c[[2]], 3], Surd[c[[3]], 4]}, IntegerQ]]; Select[Prime[Range[12000]], pdenQ] (* The program uses the AllTrue function from Mathematica version 10 *) (* Harvey P. Dale, Jun 06 2015 *) PROG (PARI) lista(nn) = {forprime(p = 2, nn, if (issquare(denominator(sum(k=1, p-1, 1/k^2))) && ispower(denominator(sum(k=1, p-1, 1/k^3)), 3) && ispower(denominator(sum(k=1, p-1, 1/k^4)), 4), print1(p, ", ")); ); } \\ Michel Marcus, Nov 05 2013 CROSSREFS Cf. A061002, A034602, A127029, A127042, A127043, A127044, A127046, A127047, A127048, A127049, A127051, A127061. Sequence in context: A215315 A065725 A057468 * A214735 A216061 A348062 Adjacent sequences: A127059 A127060 A127061 * A127063 A127064 A127065 KEYWORD nonn AUTHOR Artur Jasinski, Jan 04 2007 EXTENSIONS More terms from Max Alekseyev, Feb 08 2007 STATUS approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recents
The OEIS Community | Maintained by The OEIS Foundation Inc.

Last modified May 23 16:36 EDT 2024. Contains 372765 sequences. (Running on oeis4.)