login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A127047
Primes p such that denominator of Sum_{k=1..p-1} 1/k^4 is a fourth power.
9
2, 3, 5, 7, 11, 13, 17, 19, 29, 31, 53, 67, 71, 73, 97, 101, 103, 107, 109, 127, 131, 197, 199, 211, 223, 227, 229, 233, 293, 367, 373, 379, 383, 389, 397, 401, 439, 443, 449, 457, 461, 463, 557, 563, 569, 571, 577, 877, 881, 883, 967, 971, 977, 983, 991, 997
OFFSET
1,1
LINKS
Amiram Eldar, Table of n, a(n) for n = 1..10000 (terms 1..665 from Robert Israel)
MAPLE
S:= 0: R:= NULL: count:= 0:
for k from 1 while count < 100 do
S:= S + 1/k^4;
if isprime(k+1) and surd(denom(S), 4)::integer then R:= R, k+1; count:= count+1 fi
od:
R; # Robert Israel, Oct 25 2019
MATHEMATICA
d[n_] := Module[{}, su = 0; a = {}; For[i = 1, i <= n, i++, su = su + 1/ i^4; If[PrimeQ[i + 1], If[IntegerQ[(Denominator[su])^(1/4)], AppendTo[a, i + 1]]]]; a]; d[10000]
Select[Flatten[Position[Denominator[Accumulate[1/Range[1000]^4]], _?(IntegerQ[ Surd[ #, 4]]&)]], PrimeQ] (* Harvey P. Dale, Feb 08 2015 *)
CROSSREFS
KEYWORD
nonn,look
AUTHOR
Artur Jasinski, Jan 03 2007
STATUS
approved