login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

Primes p such that denominator of Sum_{k=1..p-1} 1/k^4 is a fourth power.
9

%I #17 Mar 25 2020 06:51:12

%S 2,3,5,7,11,13,17,19,29,31,53,67,71,73,97,101,103,107,109,127,131,197,

%T 199,211,223,227,229,233,293,367,373,379,383,389,397,401,439,443,449,

%U 457,461,463,557,563,569,571,577,877,881,883,967,971,977,983,991,997

%N Primes p such that denominator of Sum_{k=1..p-1} 1/k^4 is a fourth power.

%H Amiram Eldar, <a href="/A127047/b127047.txt">Table of n, a(n) for n = 1..10000</a> (terms 1..665 from Robert Israel)

%p S:= 0: R:= NULL: count:= 0:

%p for k from 1 while count < 100 do

%p S:= S + 1/k^4;

%p if isprime(k+1) and surd(denom(S),4)::integer then R:= R,k+1; count:= count+1 fi

%p od:

%p R; # _Robert Israel_, Oct 25 2019

%t d[n_] := Module[{}, su = 0; a = {}; For[i = 1, i <= n, i++, su = su + 1/ i^4; If[PrimeQ[i + 1], If[IntegerQ[(Denominator[su])^(1/4)], AppendTo[a, i + 1]]]]; a]; d[10000]

%t Select[Flatten[Position[Denominator[Accumulate[1/Range[1000]^4]],_?(IntegerQ[ Surd[ #,4]]&)]],PrimeQ] (* _Harvey P. Dale_, Feb 08 2015 *)

%Y Cf. A061002, A034602, A127029, A127042, A127046.

%K nonn,look

%O 1,1

%A _Artur Jasinski_, Jan 03 2007