login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A090840
Smallest prime whose product of digits is 5^n.
6
11, 5, 11551, 15551, 1551551, 15551551, 1155555151, 1555551551, 11555555551, 1155155555551, 555555515551, 555555555551, 5555555555551, 555155555555551, 51555555551555551, 51555555555555551, 1155555555555555551, 15551555555555555551, 1155515555555555555551
OFFSET
0,1
LINKS
Michael S. Branicky, Table of n, a(n) for n = 0..998
EXAMPLE
a(4) = 1551551 because its digital product is 5^4, and it is prime.
MAPLE
a:= proc(n) local k, t; for k from 0 do t:= min(select(isprime,
map(x-> parse(cat(x[])), combinat[permute]([1$k, 5$n]))));
if t<infinity then return t fi od
end:
seq(a(n), n=0..18); # Alois P. Heinz, Nov 05 2021
MATHEMATICA
NextPrim[n_] := Block[{k = n + 1}, While[ !PrimeQ[k], k++ ]; k]; a = Table[0, {18}]; p = 2; Do[q = Log[5, Times @@ IntegerDigits[p]]; If[q != 0 && IntegerQ[q] && a[[q]] == 0, a[[q]] = p; Print[q, " = ", p]]; p = NextPrim[p], {n, 1, 10^9}]
For a(13); a = Map[ FromDigits, Permutations[{1, 1, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5}]]; Min[ Select[a, PrimeQ[ # ] &]]
PROG
(Python)
from sympy import isprime
from sympy.utilities.iterables import multiset_permutations as mp
def a(n):
if n < 2: return [11, 5][n]
digits = n + 1
while True:
for p in mp("1"*(digits-n-1) + "5"*n, digits-1):
t = int("".join(p) + "1")
if isprime(t): return t
digits += 1
print([a(n) for n in range(19)]) # Michael S. Branicky, Nov 05 2021
CROSSREFS
KEYWORD
base,nonn
AUTHOR
Robert G. Wilson v, Dec 09 2003
EXTENSIONS
a(17) and beyond from Michael S. Branicky, Nov 05 2021
STATUS
approved