login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A359439
a(n) is the least number of the form p^2 + q^2 - 2 for primes p and q that is an odd multiple of 2^n, or -1 if there is no such number.
1
11, 6, -1, 56, 16, 32, 192, 128, 2816, 1536, 15360, 30720, 12288, 73728, 147456, 32768, 196608, 1179648, 22806528, 11010048, 34603008, 31457280, 314572800, 679477248, 50331648, 301989888, 1006632960, 10871635968, 20132659200, 4831838208, 28991029248, 173946175488, 450971566080, 77309411328
OFFSET
0,1
COMMENTS
Suggested by an email from J. M. Bergot.
a(2) = -1 because if p and q are odd primes, p^2 + q^2 - 2 is divisible by 8.
EXAMPLE
a(0) = 11 = 2^2 + 3^2 - 2 = 11*2^0.
a(1) = 6 = 2^2 + 2^2 - 2 = 3*2^1.
a(3) = 56 = 3^2 + 7^2 - 2 = 7*2^3.
a(4) = 16 = 3^2 + 3^2 - 2 = 1*2^4.
MAPLE
f:= proc(n) local b, t, s, x, y;
t:= 2^n;
for b from 1 by 2 do
if ormap(s -> subs(s, x) <= subs(s, y) and isprime(subs(s, x)) and isprime(subs(s, y)), [isolve(x^2+y^2-2=b*t)]) then return b*t fi
od;
end proc:
f(2):= -1:
map(f, [$0..40]);
CROSSREFS
Sequence in context: A090840 A227775 A204011 * A359492 A347357 A288069
KEYWORD
sign
AUTHOR
Robert Israel, Jan 02 2023
STATUS
approved