login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A359492
a(n) is the least number of the form p^2 + q^2 - 2 for primes p and q that is an odd prime times 2^n, or -1 if there is no such number.
0
11, 6, -1, 56, 48, 96, 192, 384, 2816, 1536, 109568, 10582016, 12288, 7429922816, 64176128, 4318724096, 196608, 60486975488, 9388028592128, 849566088298496, 214058289594368, 896029329195008
OFFSET
0,1
COMMENTS
If a(n) > -1 then a(n) >= A359439(n).
a(22) <= 10228945815339008; a(23) <= 188039754665689088; a(24) <= 54409680373415936; a(25) <= 246561971023904768; a(26) <= 966464636658384896. - Daniel Suteu, Jan 05 2023
EXAMPLE
a(4) = 48 = 3*2^4 = 5^2 + 5^2 - 2.
MAPLE
f:= proc(n) local b, t, s, x, y;
t:= 2^n; b:= 2;
do
b:= nextprime(b);
if member(3, numtheory:-factorset(b*t+2) mod 4) then next fi;
if ormap(s -> isprime(subs(s, x)) and isprime(subs(s, y)), [isolve(x^2+y^2-2=b*t)]) then return b*t fi
od;
end proc:
f(2):= -1:
map(f, [$0..18]);
CROSSREFS
Sequence in context: A227775 A204011 A359439 * A347357 A288069 A236175
KEYWORD
sign,more
AUTHOR
Robert Israel, Jan 02 2023
EXTENSIONS
a(19)-a(21) from Daniel Suteu, Jan 05 2023
STATUS
approved