login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A118817
Decimal expansion of Product_{n >= 1} cos(1/n).
5
3, 8, 8, 5, 3, 6, 1, 5, 3, 3, 3, 5, 1, 7, 5, 8, 5, 9, 1, 8, 4, 3, 2, 9, 5, 7, 5, 6, 8, 7, 0, 3, 5, 9, 0, 5, 0, 1, 3, 9, 0, 0, 5, 2, 8, 5, 9, 7, 5, 1, 7, 9, 2, 1, 9, 1, 3, 1, 8, 4, 6, 1, 1, 9, 9, 8, 7, 9, 8, 7, 4, 9, 4, 3, 4, 6, 3, 3, 9, 3, 2, 7, 6, 8, 3, 8, 8, 4, 3, 1, 9, 7, 8, 1, 3, 8, 3, 4, 0, 8, 2, 2, 4, 1, 3
OFFSET
0,1
LINKS
Charles R Greathouse IV, Table of n, a(n) for n = 0..10000
FORMULA
Equals exp(Sum_{n>=1} -c(n)*zeta(2*n)), where c(n) = A046990(n)/A046991(n).
Equals exp(-Sum_{n>=1} (2^(2*n)-1) * Zeta(2*n)^2 / (n*Pi^(2*n)) ). - Vaclav Kotesovec, Sep 20 2014
Equals exp(Sum_{k>=1} (-1)^k*2^(2*k-1)*(2^(2*k)-1)*B(2*k)*zeta(2*k)/(k*(2*k)!)), where B(k) is the k-th Bernoulli number. - Amiram Eldar, Jul 30 2023
EXAMPLE
0.38853615333517585918432957568703590501390...
MAPLE
nn:= 120:
p:= product(cos(1/n), n=1..infinity):
f:= evalf(p, nn+10):
s:= convert(f, string):
seq(parse(s[n+1]), n=1..nn); # Alois P. Heinz, Nov 04 2013
MATHEMATICA
S = Series[Log[Cos[x]], {x, 0, 400}]; N[Exp[N[Sum[SeriesCoefficient[S, 2k] Zeta[2k], {k, 1, 200}], 70]], 50]
Block[{$MaxExtraPrecision = 1000}, Do[Print[N[1/Exp[Sum[(2^(2*n) - 1)*Zeta[2*n]^2/(n*Pi^(2*n)), {n, 1, m}]], 110]], {m, 250, 300}]] (* Vaclav Kotesovec, Sep 20 2014 *)
PROG
(PARI) exp(-sumpos(n=1, -log(cos(1/n)))) \\ warning: requires 2.6.2 or greater; Charles R Greathouse IV, Nov 04 2013
(PARI) T(n)=((-4)^n-(-16)^n)*bernfrac(2*n)/2/n/(2*n)!
lm=lambertw(2*log(Pi/2)*10^default(realprecision))/2/log(Pi/2); exp(-sum(n=1, lm, T(n)*zeta(2*n))) \\ Charles R Greathouse IV, Nov 06 2013
CROSSREFS
KEYWORD
cons,nonn
AUTHOR
Fredrik Johansson, May 23 2006
EXTENSIONS
Corrected offset and extended by Robert G. Wilson v, Nov 03 2013
STATUS
approved