|
|
A046990
|
|
Numerators of Taylor series for log(1/cos(x)). Also from log(cos(x)).
|
|
10
|
|
|
0, 1, 1, 1, 17, 31, 691, 10922, 929569, 3202291, 221930581, 9444233042, 56963745931, 29435334228302, 2093660879252671, 344502690252804724, 129848163681107301953, 868320396104950823611, 209390615747646519456961, 28259319101491102261334882
(list;
graph;
refs;
listen;
history;
text;
internal format)
|
|
|
OFFSET
|
0,5
|
|
REFERENCES
|
L. Comtet, Advanced Combinatorics, Reidel, 1974, p. 88.
CRC Standard Mathematical Tables and Formulae, 30th ed. 1996, p. 42.
|
|
LINKS
|
T. D. Noe, Table of n, a(n) for n = 0..100
|
|
FORMULA
|
Let q(n) = Sum_{k=0..n-1} (-1)^k*A201637(n-1,k) then a(n) = numerator((-1)^(n-1)*q(2*n)/(2*n)!). - Peter Luschny, Nov 16 2012
|
|
EXAMPLE
|
log(1/cos(x)) = 1/2*x^2+1/12*x^4+1/45*x^6+17/2520*x^8+31/14175*x^10+...
log(cos(x)) = -(1/2*x^2+1/12*x^4+1/45*x^6+17/2520*x^8+31/14175*x^10+...).
|
|
MAPLE
|
q:= proc(n) add((-1)^k*combinat[eulerian1](n-1, k), k=0..n-1) end: A046990:= n -> numer((-1)^(n-1)*q(2*n)/(2*n)!):
seq(A046990(n), n=0..19); # Peter Luschny, Nov 16 2012
|
|
MATHEMATICA
|
Join[{0}, Numerator[Select[CoefficientList[Series[Log[1/Cos[x]], {x, 0, 40}], x], #!=0&]]] (* Harvey P. Dale, Jul 27 2011 *)
a[n_] := Numerator[((-4)^n-(-16)^n)*BernoulliB[2*n]/2/n/(2*n)!]; a[0] = 0; Table[a[n], {n, 0, 19}] (* Jean-François Alcover, Feb 11 2014, after Charles R Greathouse IV *)
|
|
PROG
|
(Sage) # uses[eulerian1 from A173018]
def A046990(n):
def q(n):
return add((-1)^k*eulerian1(n-1, k) for k in (0..n-1))
return ((-1)^(n-1)*q(2*n)/factorial(2*n)).numer()
[A046990(n) for n in (0..19)] # Peter Luschny, Nov 16 2012
(PARI) a(n)=numerator(((-4)^n-(-16)^n)*bernfrac(2*n)/2/n/(2*n)!) \\ Charles R Greathouse IV, Nov 06 2013
(PARI) {a(n) = if( n<1, 0, my(m = 2*n); numerator( polcoeff( -log(cos(x + x * O(x^m))), m)))}; /* Michael Somos, Jun 03 2019 */
|
|
CROSSREFS
|
Cf. A046991, A002430, A050970.
Sequence in context: A276592 A002425 A275994 * A059212 A335360 A058899
Adjacent sequences: A046987 A046988 A046989 * A046991 A046992 A046993
|
|
KEYWORD
|
nonn,easy,frac,nice
|
|
AUTHOR
|
N. J. A. Sloane
|
|
STATUS
|
approved
|
|
|
|