login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A050970
Numerator of S(n)/Pi^n, where S(n) = Sum_{k=-inf..+inf} (4k+1)^(-n).
16
1, 1, 1, 1, 5, 1, 61, 17, 277, 31, 50521, 691, 540553, 5461, 199360981, 929569, 3878302429, 3202291, 2404879675441, 221930581, 14814847529501, 4722116521, 69348874393137901, 56963745931, 238685140977801337, 14717667114151
OFFSET
1,5
COMMENTS
Reduced numerators of Favard constants.
LINKS
N. D. Elkies, On the sums Sum((4k+1)^(-n),k,-inf,+inf), arXiv:math/0101168 [math.CA], 2001.
N. D. Elkies, On the sums Sum_{k = -infinity .. infinity} (4k+1)^(-n), Amer. Math. Monthly, 110 (No. 7, 2003), 561-573.
Z. K. Silagadze, Comment on the sums S(n) = sum(k=-inf..inf) 1/(4k+1)^n, (2012) arXiv:1207.2055
Eric Weisstein's World of Mathematics, Favard Constants
FORMULA
There is a simple formula in terms of Euler and Bernoulli numbers.
a(2n) = A046976(n), a(2n+1) = A089171(n+1) (conjectured).
Numerator of coefficients of expansion of (sec(x/2) + tan(x/2) + 1)/2 in powers of x. - Sergei N. Gladkovskii, Nov 11 2014
EXAMPLE
The first few values of S(n)/Pi^n are 1/4, 1/8, 1/32, 1/96, 5/1536, 1/960, ...
MAPLE
S := proc(n, k) option remember; if k = 0 then `if`(n = 0, 1, 0) else
S(n, k - 1) + S(n - 1, n - k) fi end: EZ := n -> S(n, n)/(2^n * n!):
A050970 := n -> numer(EZ(n-1)): seq(A050970(n), n=1..26); # Peter Luschny, Aug 02 2017
# alternative
A050970 := proc(n)
if type(n, 'even') then
(-1)^(n/2)*2^(n-2)/(n-1)!*euler(n-1, 0) ;
else
(-1)^((n-1)/2)*2^(n-2)/(n-1)!*euler(n-1, 1/2) ;
end if;
%/2^n ;
numer(%) ;
end proc:
seq(A050970(n), n=1..20) ; # R. J. Mathar, Jun 26 2024
MATHEMATICA
s[n_] := Sum[(4*k + 1)^(-n), {k, -Infinity, Infinity}]; a[n_] := Numerator[FullSimplify[s[n]/Pi^n]]; a[1] = 1; Table[a[n], {n, 1, 26}] (* Jean-François Alcover, Oct 25 2012 *)
s[n_?EvenQ] := (-1)^(n/2-1)*(2^n-1)*BernoulliB[n]/(2*n!); s[n_?OddQ] := (-1)^((n-1)/2)*2^(-n-1)*EulerE[n-1]/(n-1)!; Table[s[n] // Numerator, {n, 1, 26}] (* Jean-François Alcover, May 13 2013 *)
a[n_] := 4*Sum[((-1)^k/(2*k+1))^n, {k, 0, Infinity}] /. Pi -> 1 // Numerator; Table[a[n], {n, 1, 26}] (* Jean-François Alcover, Jun 20 2014 *)
Table[4/(2 Pi)^n LerchPhi[(-1)^n, n, 1/2], {n, 21}] // Numerator (* Eric W. Weisstein, Aug 02 2017 *)
Table[4/Pi^n If[Mod[n, 2] == 0, DirichletLambda, DirichletBeta][n], {n, 21}] // Numerator (* Eric W. Weisstein, Aug 02 2017 *)
PROG
(PARI) {a(n) = if( n<0, 0, numerator( polcoeff( 1 / (1 - tan(x/4 + x * O(x^n))), n)))}; /* Michael Somos, Nov 11 2014 */
CROSSREFS
Denominators: A068205. See also A050971.
Sequence in context: A340472 A342318 A246006 * A335955 A138548 A220422
KEYWORD
nonn,frac
EXTENSIONS
Entry revised by N. J. A. Sloane, Mar 24 2002
STATUS
approved