login
The OEIS is supported by the many generous donors to the OEIS Foundation.

 

Logo

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 60, we have over 367,000 sequences, and we’ve crossed 11,000 citations (which often say “discovered thanks to the OEIS”).

Other ways to Give
Hints
(Greetings from The On-Line Encyclopedia of Integer Sequences!)
A335955 a(n) = (4^n*(Z(-n, 1/4) - Z(-n, 3/4)) + Z(-n, 1)*(2^(n+1)-1))*A171977(n+1), where Z(n, c) is the Hurwitz zeta function. 0
0, -1, -1, 1, 5, -1, -61, 17, 1385, -31, -50521, 691, 2702765, -5461, -199360981, 929569, 19391512145, -3202291, -2404879675441, 221930581, 370371188237525, -4722116521, -69348874393137901, 968383680827, 15514534163557086905, -14717667114151, -4087072509293123892361 (list; graph; refs; listen; history; text; internal format)
OFFSET
0,5
LINKS
N. D. Elkies, On the sums Sum((4k+1)^(-n),k,-inf,+inf), arXiv:math/0101168 [math.CA], 2001.
N. D. Elkies, On the sums Sum_{k = -infinity .. infinity} (4k+1)^(-n), Amer. Math. Monthly, 110 (No. 7, 2003), 561-573.
Eric Weisstein's World of Mathematics, Favard Constants
FORMULA
A002425 interleaved with A028296.
|Numerator(a(n)/n!)| = A050970(n+1) for n >= 1.
a(n) = 2*(4^n*(Z(-n, 1/4) - Z(-n, 3/4)) + Z(-n,1)*A335954(n+1)) where Z(n, c) is the Hurwitz zeta function.
MAPLE
HZeta := (s, v) -> Zeta(0, s, v):
a := s -> (4^s*(HZeta(-s, 1/4) - HZeta(-s, 3/4)) + HZeta(-s, 1)*(2^(s+1)-1))* 2^padic[ordp](2*(s+1), 2): seq(a(n), n = 0..28);
MATHEMATICA
a[n_] := 2^(IntegerExponent[n + 1, 2] + 1) (4^n (HurwitzZeta[-n, 1/4] - HurwitzZeta[-n, 3/4]) + HurwitzZeta[-n, 1] (2^(n + 1) - 1));
Table[FullSimplify[a[n]], {n, 0, 26}]
CROSSREFS
Sequence in context: A342318 A246006 A050970 * A138548 A220422 A251596
KEYWORD
sign
AUTHOR
Peter Luschny, Jul 20 2020
STATUS
approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recents
The OEIS Community | Maintained by The OEIS Foundation Inc.

License Agreements, Terms of Use, Privacy Policy. .

Last modified December 2 11:04 EST 2023. Contains 367517 sequences. (Running on oeis4.)