The OEIS is supported by the many generous donors to the OEIS Foundation.

 Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 60, we have over 367,000 sequences, and we’ve crossed 11,000 citations (which often say “discovered thanks to the OEIS”). Other ways to Give
 Hints (Greetings from The On-Line Encyclopedia of Integer Sequences!)
 A335955 a(n) = (4^n*(Z(-n, 1/4) - Z(-n, 3/4)) + Z(-n, 1)*(2^(n+1)-1))*A171977(n+1), where Z(n, c) is the Hurwitz zeta function. 0
 0, -1, -1, 1, 5, -1, -61, 17, 1385, -31, -50521, 691, 2702765, -5461, -199360981, 929569, 19391512145, -3202291, -2404879675441, 221930581, 370371188237525, -4722116521, -69348874393137901, 968383680827, 15514534163557086905, -14717667114151, -4087072509293123892361 (list; graph; refs; listen; history; text; internal format)
 OFFSET 0,5 LINKS Table of n, a(n) for n=0..26. N. D. Elkies, On the sums Sum((4k+1)^(-n),k,-inf,+inf), arXiv:math/0101168 [math.CA], 2001. N. D. Elkies, On the sums Sum_{k = -infinity .. infinity} (4k+1)^(-n), Amer. Math. Monthly, 110 (No. 7, 2003), 561-573. Eric Weisstein's World of Mathematics, Favard Constants FORMULA A002425 interleaved with A028296. |Numerator(a(n)/n!)| = A050970(n+1) for n >= 1. a(n) = 2*(4^n*(Z(-n, 1/4) - Z(-n, 3/4)) + Z(-n,1)*A335954(n+1)) where Z(n, c) is the Hurwitz zeta function. MAPLE HZeta := (s, v) -> Zeta(0, s, v): a := s -> (4^s*(HZeta(-s, 1/4) - HZeta(-s, 3/4)) + HZeta(-s, 1)*(2^(s+1)-1))* 2^padic[ordp](2*(s+1), 2): seq(a(n), n = 0..28); MATHEMATICA a[n_] := 2^(IntegerExponent[n + 1, 2] + 1) (4^n (HurwitzZeta[-n, 1/4] - HurwitzZeta[-n, 3/4]) + HurwitzZeta[-n, 1] (2^(n + 1) - 1)); Table[FullSimplify[a[n]], {n, 0, 26}] CROSSREFS Cf. A002425, A028296, A050970, A171977, A335954. Sequence in context: A342318 A246006 A050970 * A138548 A220422 A251596 Adjacent sequences: A335952 A335953 A335954 * A335956 A335957 A335958 KEYWORD sign AUTHOR Peter Luschny, Jul 20 2020 STATUS approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recents
The OEIS Community | Maintained by The OEIS Foundation Inc.

Last modified December 2 11:04 EST 2023. Contains 367517 sequences. (Running on oeis4.)