OFFSET
0,6
COMMENTS
The defining formula simultaneously represents the numerators of the unsigned divided Bernoulli numbers and the unsigned Euler secant numbers. Some authors consider the divided Bernoulli numbers B(n)/n to be more fundamental than B(n). For instance, B(n)/n is a p-integer for all primes p for which p - 1 does not divide n (see Ireland and Rosen).
REFERENCES
K. Ireland and M. Rosen, A classical introduction to modern number theory, vol. 84, Graduate Texts in Mathematics. Springer-Verlag, 2nd edition, 1990. [Prop. 15.2.4, p. 238]
LINKS
Arnold Adelberg, Shaofang Hong and Wenli Ren, Bounds of Divided Universal Bernoulli Numbers and Universal Kummer Congruences, Proceedings of the American Mathematical Society, Vol. 136(1), 2008, p. 61-71.
Bernd C. Kellner, The structure of Bernoulli numbers, arXiv:math/0411498 [math.NT], 2004.
EXAMPLE
r(n) = 1, 1/2, 1/12, 1/56, 1/120, 5/992, 1/252, 61/16256, 1/240, 1385/261632, 1/132, ...
MAPLE
a := n -> `if`(n <= 2, 1, `if`(n::even, numer(abs(bernoulli(n))/n), abs(euler(n - 1)))); seq(a(n), n = 0..29);
MATHEMATICA
r[s_] := If[s == 0, 1, (I^s PolyLog[1 - s, -I] + (-I)^s PolyLog[1 - s, I]) / (4^s - 2^s)]; Table[r[n], {n, 0, 29}] // Numerator
CROSSREFS
KEYWORD
nonn,frac
AUTHOR
Peter Luschny, Mar 22 2021
STATUS
approved