login
A342318
a(n) = numerator(((i^n * PolyLog(1 - n, -i) + (-i)^n * PolyLog(1 - n, i))) / (4^n - 2^n)) if n > 0 and a(0) = 1. Here i denotes the imaginary unit.
2
1, 1, 1, 1, 1, 5, 1, 61, 1, 1385, 1, 50521, 691, 2702765, 1, 199360981, 3617, 19391512145, 43867, 2404879675441, 174611, 370371188237525, 77683, 69348874393137901, 236364091, 15514534163557086905, 657931, 4087072509293123892361, 3392780147, 1252259641403629865468285
OFFSET
0,6
COMMENTS
The defining formula simultaneously represents the numerators of the unsigned divided Bernoulli numbers and the unsigned Euler secant numbers. Some authors consider the divided Bernoulli numbers B(n)/n to be more fundamental than B(n). For instance, B(n)/n is a p-integer for all primes p for which p - 1 does not divide n (see Ireland and Rosen).
REFERENCES
K. Ireland and M. Rosen, A classical introduction to modern number theory, vol. 84, Graduate Texts in Mathematics. Springer-Verlag, 2nd edition, 1990. [Prop. 15.2.4, p. 238]
LINKS
Arnold Adelberg, Shaofang Hong and Wenli Ren, Bounds of Divided Universal Bernoulli Numbers and Universal Kummer Congruences, Proceedings of the American Mathematical Society, Vol. 136(1), 2008, p. 61-71.
Bernd C. Kellner, The structure of Bernoulli numbers, arXiv:math/0411498 [math.NT], 2004.
FORMULA
a(2*n) = |A001067(n)| for n > 0.
a(2*n+1) = A000364(n) = |A122045(2*n)|.
EXAMPLE
r(n) = 1, 1/2, 1/12, 1/56, 1/120, 5/992, 1/252, 61/16256, 1/240, 1385/261632, 1/132, ...
MAPLE
a := n -> `if`(n <= 2, 1, `if`(n::even, numer(abs(bernoulli(n))/n), abs(euler(n - 1)))); seq(a(n), n = 0..29);
MATHEMATICA
r[s_] := If[s == 0, 1, (I^s PolyLog[1 - s, -I] + (-I)^s PolyLog[1 - s, I]) / (4^s - 2^s)]; Table[r[n], {n, 0, 29}] // Numerator
CROSSREFS
Cf. A342319 (denominator), A001067, A000364, A122045.
Sequence in context: A144268 A013988 A340472 * A246006 A050970 A335955
KEYWORD
nonn,frac
AUTHOR
Peter Luschny, Mar 22 2021
STATUS
approved